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We have designed and tested experimentally a
morphing structure consisting of a neutrally stable
thin cylindrical shell driven by a multiparameter
piezoelectric actuation. The shell is obtained by
plastically deforming an initially flat copper disk, so as
to induce large isotropic and almost uniform inelastic
curvatures. Following the plastic deformation, in a
perfectly isotropic system, the shell is theoretically
neutrally stable, owning a continuous manifold
of stable cylindrical shapes corresponding to the
rotation of the axis of maximal curvature. Small
imperfections render the actual structure bistable,
giving preferred orientations. A three-parameter
piezoelectric actuation, exerted through micro-fiber-
composite actuators, allows us to add a small
perturbation to the plastic inelastic curvature and
to control the direction of maximal curvature. This
actuation law is designed through a geometrical
analogy based on a fully non-linear inextensible
uniform-curvature shell model. We report on the
fabrication, identification, and experimental testing of
a prototype and demonstrate the effectiveness of the
piezoelectric actuators in controlling its shape. The
resulting motion is an apparent rotation of the shell,
controlled by the voltages as in a "gear-less motor",
which is, in reality, a precession of the axis of principal
curvature.
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1. Introduction
Thin structures, such as plates and shells, are essentially surfaces that can stretch and bend.
Stretching, i.e. the change of metric of the midplane, requires that the material is deformed
uniformly through-the-thickness and that the elastic energy is proportional to the shell thickness
h. Bending, i.e. the change of curvature of the midplane, implies a material deformation linear
through-the-thickness and an elastic energy proportional to h3. Moreover, the metric and the
curvature of a surface must obey a fundamental compatibility equation that relates the change
of the Gaussian curvature (i.e. the product of the principal curvatures) to the in-plane stretching
[1]. In the differential geometry of surfaces this compatibility equation stems from the Gauss
Theorem. The combination of these effects gives thin shells unique features: (i) soft inextensional
modes at constant Gaussian curvature; (ii) stiff modes implying a stretching of the mid-surface,
i.e. a change of the Gaussian curvature; (iii) possible transition paths between several stable
equilibria (minimal energy configurations) characterised by large shape-changes, almost constant
Gaussian curvature, and small material deformations. Researchers and engineers exploit these
properties to design shape-changing reconfigurable (or morphing) structures where thermal
effects [2], swelling [3], piezoelectricity [4–8] or photoelasticity [9] can be used to control
the shape. All these effects introduce inelastic deformations, prescribing target values for the
metric and curvature of the surfaces [9–13]. If these target deformations are not compatible,
equilibrium configurations are obtained through an elastic misfit and are pre-stressed. Lewicka
and coworkers [14] recently developed a rigorous asymptotic analysis of non-Euclidean plates
[3] with geometrically incompatible inelastic deformations, assessing the appropriate two-
dimensional models and the possible energy scaling regimes [14] using dimensional reduction
techniques based on the direct methods of the calculus of variations [15].

In this paper, we exploit the effect of incompatible inelastic deformations to design shells
where a weak embedded actuation drives large shape-changes. Previously, several authors [4–6,8]
tried to use piezoelectric actuators to trigger snap-through instabilities between two stable
equilibrium shapes of bistable composites cross-ply laminated plates, mimicking the behaviour
of a Venus Flytrap’s leaf [16]. Here, we draw on a different concept: we design a structure
characterised by several stable equilibria separated by vanishing energy gaps, similar to the
neutrally stable (or zero-stiffness) shells of [17]. Hence we are able to obtain large shape-changes
with low actuation efforts and to continuously drive the transition between different stable
equilibria. As proposed in [17,18], such a neutrally stable shell is built by introducing isotropic
plastic curvatures in isotropic initially flat disk. This generates cylindrical shells with a special
zero-stiffness "mode", where the axis of curvature can rotate freely. Our idea is to use a set of
surface-bonded piezoelectric actuators to apply a perturbation to the initial plastic curvature, so
as to continuously control the directions of principal curvature of the shell. Here we elaborate on
the modelling and design principles. We also report on the fabrication and test of an experimental
prototype, proving the practical effectiveness of the proposed concepts.

To introduce our goals, in Section 2 we outline our final experimental result. In Section 3,
we present a simple nonlinear model obtained assuming that the shell is inextensible and the
curvature fields uniform. We show that, in such a framework, the search of the stable equilibria of
the shell for a given inelastic curvature is equivalent to finding the points on a cone with minimal
distance from a given point of IR3. This equivalence is sufficient to derive, in Section 4, the
multiparameter actuation strategy to produce a complete 360◦ precession of the shell curvature.
In Section 5 we report in detail the experimental findings, comparing them with the predictions
of the theoretical model and finite element results.
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2. Overview of the main experimental result
We fabricate a cylindrical shell by manually winding an initially flat thin copper disk around
cylinders of progressively decreasing diameters, see Figure 1. The procedure is repeated several
times, by plastically bending the shell along two mutually orthogonal directions. We apply
inelastic curvatures with a radius of curvature of the order of the diameter of the shell. In this
regime, geometrically non-linearities play an important role, and the behaviour of the shell
is approximately inextensible. Inextensibility implies that the equilibrium configurations are
cylinders. The plastic deformation process is modelled by an isotropic and homogenous tensor
of inelastic curvature in the form k̄ = k̄P I, where I is the two-by-two identity matrix, and k̄P
gives the amplitude of the inelastic curvature of plastic origin. In the perfectly isotropic case,
theoretical models predict that the shell is neutrally stable: all the cylindrical configurations having
an approximately uniform and uniaxial curvature tensor in the form k = k e(ϕ)⊗ e(ϕ) have then
same elastic energy, e(ϕ) being a unit vector oriented with an angle ϕ (e.g. see Figure 3b). These
configurations constitute a zero-stiffness mode of neutrally-stable equilibria, as shown in [17,18].
In practice, imperfections, which we attribute mainly to anisotropic plastic hardening, render
the disk bistable at the end of the plastification phase. Indeed, as pointed out in [19], neutral
stability is a singular regime, which is not robust with respect to small perturbations of the system
parameters. However, since the energy required to rotate the axis of principal curvature is very
low, the same shell can be classified as almost neutrally stable.

(a) (b) (c)

Figure 1: An initially flat stress-free disk of radius L= 122.5 mm and thickness h= 0.3 mm
is winded over PVC cylinders (a) of progressively smaller diameters (160 mm, 140 mm, and
110 mm) to generate equal plastic curvatures in two orthogonal directions (isotropic inelastic
curvature). The resulting structure is bistable. The first (b) and second (c) stable configurations
are approximately cylindrical, with principal curvature axes rotated of π/2.

After plastification, on the top surface of the shell, we bond three pairs of piezoelectric
Macro-Fiber-Composite actuators (MFC) aligned along three directions, which are mutually
rotated by an angle 120◦. Each MFC pair is connected in parallel and driven by an independent
actuation voltage, whose effect is to introduce a small inelastic curvature of piezoelectric origin
in the corresponding direction. Driving the three pairs of MFC with an appropriate phase-shift
introduces an equivalent uniaxial piezoelectrically-induced inelastic curvature k̄V , which is very
small with respect to that of plastic origin. We show that by varying the voltages so as to rotate the
orientation of k̄V , the principal axis of the cylindrical equilibrium shape rotates accordingly (see
Figure 2): we have obtained a flexible gear-less motor. The most effective illustration of this result is
given by the video provided as a Supplementary Material. The apparent 360◦rotation of the shell
is actually a deformation process at almost constant elastic energy characterised by a precession
of the axis of maximal curvature.

3. Inextensible shells with uniform curvature
We start introducing a simplified model for the shell, which builds on those presented in
[18,20,21]. It is based on the following basic assumptions, which are satisfied in our case: (i)
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Figure 2: Sequence of shell configurations during the actuation showing a complete precession of
the axis of maximal curvature. The images are frames of a Video provided in the Supplementary
Material.

the shell is inextensible and initially flat; (ii) the shell curvature is uniform in space; (iii) the
material is orthotropic and linearly elastic, (iv) the shell is free on the boundary, and the loading
is given only by imposed inelastic curvatures. The inelastic curvatures are used to model the
plastic deformations and the effect of the embedded piezoelectric actuators: they are supposed to
be given data. We consider an orthotropic material behaviour because, as we will show later, the
disk after plastification is not perfectly isotropic. The model is geometrically fully nonlinear, i.e.
the curvature, despite being supposed uniform in space, can be arbitrarily large. We show that
with these hypotheses, the problem of finding the stable equilibria has a suggestive and useful
geometrical analogy. Namely, we show that it is equivalent to finding the points on a cone (the
inextensibility constraint for the curvatures) having a minimal distance from a given target point
of IR3 (the components of the inelastic curvature tensor). Moreover, we will reduce this problem
to finding the minima of a function of a single scalar variable.

(a) Governing equations for inextensible Koiter shells and stable equilibria
We take as reference configuration for the shell the flat disk Ω = {(x1, x2)∈ IR2, x21 + x22 ≤L2},
where we (x1, x2) are cartesian coordinates and L being the radius of the disk. We denote by
x∈Ω and y= f(x)∈ S ⊂ IR3, respectively, the generic point in the reference configuration and its
placement after the transformation, S = f(Ω) being the curved current configuration of the shell.
According to standard differential geometry, denoting by ∂αf = ∂f/∂xα, and using repeated
index notation with α, β = 1, 2, the metric and the curvature of the deformed surface S are given
by

aαβ(f) = ∂αf · ∂βf, bαβ(f) = ∂αβf ·
∂αf × ∂βf
|∂αf × ∂βf |

, (3.1)

where · and × denotes the scalar and vector products. The interested reader is referred to [1] for
more details.

The first and second fundamental forms in the flat reference configuration are

a0αβ = δαβ , b0αβ = 0, α, β = 1, 2, (3.2)

where δαβ means the Kronecker delta. The relevant measures of deformation of a Koiter shell
model are the change-in-metric tensor e (membrane deformation) and the change-in-curvature
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tensor k (bending deformation). Their covariant components read respectively:

eαβ(f) =
1

2
(aαβ(f)− a0αβ)≡ 1

2
(aαβ(f)− δαβ), kαβ(f) = bαβ(f)− b0αβ ≡ bαβ(f). (3.3)

As anticipated, we consider an inextensible shell model, assuming a vanishing variation of
the metric tensor in every point, namely eαβ(f) = 0 in Ω. Hence, assuming a linearly elastic
material behaviour, the only contribution to the elastic energy is the following quadratic form
of the curvature tensor

Eb =
1

2

∫
Ω
Dαβστ (kστ (f)− k̄στ ) (kαβ(f)− k̄αβ) dΩ, (3.4)

where Dαβστ are the contravariant components of the bending stiffness tensor and k̄αβ are
the covariant components of a symmetric tensor representing the inelastic, or target, curvatures.
The inelastic curvature, or their associated inelastic pre-stresses mστ =−Dαβστ k̄αβ , may model
different physical effects: thermal and hygroscopic effects, plastic deformations or actuation by
embedded active materials, as piezoelectric actuators.

In absence of external loads, the functional (3.4) coincides with the total potential energy of the
shell. In a variational setting, the stable equilibrium configurations are the solution of following
constrained minimisation problem

min Eb, among all f such that eαβ(f) = 0. (3.5)

In the spirit of intrinsic approaches to elasticity [22], one could tackle the same problem
by minimising the energy in terms of curvature fields which are compatible with inextensible
deformations. In particular, if Ω is simply connected, the necessary and sufficient conditions for
the field kαβ to be compatible with inextensible deformations of an initially flat surface with the
metric aαβ = a0αβ = δαβ are

detkαβ = 0 and ∂βkασ − ∂σkαβ = 0, in Ω. (3.6)

These equations are the particularisation of the general Gauss and Codazzi-Mainardi
compatibility equations for the surface S, for the case of initially flat shells: they assure necessary
and sufficient conditions for the existence of a transformation f having given metric and
curvature fields [1].

Hence, an intrinsic approach, equivalent to (3.5), to find the stable equilibria is to find the
curvature field kαβ solution of

min Eb, among all kαβ such that kαβ = kβα, detkαβ = 0, ∂βkασ = ∂σkαβ in Ω. (3.7)

The fundamental theorem of surface differential geometry [1] assures the equivalence between
the solutions of (3.7) and (3.5), up to rigid body displacements.

(b) The uniform curvature assumption and a geometric analog problem
We suppose that all the covariant components of both the curvature tensor kαβ and the inelastic-
curvature tensor k̄αβ are uniform in space. Hence, the Codazzi-Mainardi conditions in (3.7) are
trivially verified. After re-organizing these components in the Voigt vectors k = (k11, k22, 2k12)>

and k̄ = (k̄11, k̄22, 2k̄12)>, the problem (3.7) is reformulated under the assumption of uniform
curvatures as

min
k∈IR3

[
1

2
D (k− k̄) · (k− k̄)

]
, such that detk := k11k22 − k212 = 0, (3.8)

where D is a symmetric 3× 3 matrix representing the bending stiffness. To deduce its
components, from the contravariant components Dαβστ in (3.4), one must perform an average
over Ω and use the Voigt representation of indices. For orthotropic materials having the
coordinate directions x1 and x2 as symmetry planes, the stiffness matrix D can always be reduced
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to the form

D :=D

 1 ν 0

ν β 0

0 0 α
1− ν

2

 , D > 0, ν2 <β, 0<β ≤ 1, α > 0. (3.9)

For homogenous shells, D= SE1h
3/(12(1− ν2)), where S is the area of Ω, E1 > 0 is the Young

modulus in the coordinate direction x1, h the thickness of the shell, ν the Poisson ratio, β =E2/E1

the ratio of Young moduli (beingE2 <E1), and γ = α(1− ν)/2 the shear stiffness. The conditions
in (3.9) on the material parameters imply a positive-definite stiffness matrix; for an isotropic
material β = α= 1.

The present formulation depends on the three dimensionless material parameters ν, β and α.
In order to further simplify the formulation and reduce the number of relevant parameters, we
introduce the change of coordinates for the curvature tensor k:

κm =

√
1 +

ν√
β

(
k11 + k22

√
β

2

)
, κd =

√
1− ν√

β

(
k22
√
β − k11
2

)
, κt =

√
(1− ν)αk12.

(3.10)
Expressions (3.10) can also apply to the tensor of inelastic curvatures k̄ and we define κ :=

{κm, κd, κt} and κ̄ = {κ̄m, κ̄d, κ̄t}. As far as the matrix D is strictly positive definite, these
relations are invertible and, therefore, represent a genuine change of coordinates in the space
of curvatures. The reason for choosing (3.10) is that the quadratic form of the bending energy is
diagonalised in terms of coordinates κ and κ̄ as

Eb =
1

2
D(k− k̄) · (k− k̄) =D

[
(κm − κ̄m)2 + (κd − κ̄d)2 + (κt − κ̄t)2

]
=D ‖κ− κ̄‖2. (3.11)

Moreover, using (3.10), the condition of inextensibily reads

detk =
1√
β + ν

(
κ2m −

κ2d
a2
− κ2t
b2

)
= 0. (3.12)

where we have introduced the following two positive non-dimensional parameters:

a=

√√
β − ν√
β + ν

, b=

√
α

1− ν√
β + ν

. (3.13)

Hence, in the new system of coordinates, the set of curvatures satisfying the inextensibility
constraint (3.12) is the cone

C := {κ∈ IR3 : c(κ) := κ2d/a
2 + κ2t /b

2 − κ2m = 0}. (3.14)

The axis of the cone is aligned with the κm-direction. The semi-axes of its elliptical cross-section
(κm = const) are aligned with the κd and κt directions, respectively, see Figure 3a.

In conclusion, the change of coordinates (3.10), implying (3.11)-(3.12), allows us to translate
(3.8) into the following problem

min
κ∈C

U(κ), U(κ) :=
Eb
2D

=
1

2
‖κ− κ̄‖2. (3.15)

This new formulation of the problem depends on only two independent non-dimensional
parameters, a and b, which completely characterise the cone C of inextensible curvatures in terms
of the material properties of the shell. It has also a remarkable geometric interpretation that will be
largely exploited in the rest of this paper. We encapsulate this result in the following proposition:

Proposition 3.1 (Geometric analogy). After the change of coordinates (3.10), the admissible (uniform)
curvatures of the inextensible Koiter shell are constrained to lie on the cone C defined by (3.14). The potential
energy of the shell with (uniform) inelastic curvatures κ̄∈ IR3 in a configuration κ∈ C is proportional
to the squared Euclidean distance ‖κ− κ̄‖2. Hence, given the inelastic curvatures κ̄∈ IR3, the (locally)
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stable equilibria of the shell are all the points κ(i) on the cone C having (locally) minimal Euclidean distance
from the target point κ̄∈ IR3.

In an augmented Lagrangian approach, the stationarity condition of (3.15) can be written
by imposing the gradient of the energy, ∂U/∂κ = κ− κ̄, to be parallel to the gradient to the
constraint c(κ) = 0 as defined in (3.14):

κ− κ̄ = λ
∂c(κ)

∂κ
,

∂c(κ)

∂κ
= 2{−κm, κd/a2, κt/b2}, (3.16)

where λ is an additional scalar unknown (Lagrange multiplier). This equation has a
straightforward interpretation in our geometric analogy that can be used to graphically solve
the equilibrium problem: the equilibria are the points on the cone for which the difference κ− κ̄

is parallel to ∂c(κ)/∂κ and, hence, normal to the cone. Moreover, being both the energy and
the constraint quadratic functions of κ, equation (3.16) is linear and can be solved uniquely for
κ as a function of λ. Replacing the solutions of (3.16) into the constraint (3.12), gives a quartic
polynomial in λ (the explicit calculations are not reported here). This proves that for any inelastic
curvature κ̄ there are at most four equilibrium configurations.

(a) (b)

Figure 3: (a): Coordinates (κm, θ) in (3.17) on the cone of inextensible curvatures. (b):
Corresponding cylindrical shell shape with curvature k = k e(ϕ)⊗ e(ϕ) where k and ϕ are given
in (3.20). For β = 1, k= κm/

√
1 + ν and ϕ= (π − θ)/2.

In order to analytically describe the solutions of the equilibrium problem (3.16), we introduce
the coordinates (κm, θ) on the cone such that any point on C is written as

κ(κm, θ) = κm (1, a cos θ, b sin θ) , (3.17)

where κm is the axial coordinate (we assume κm > 0) and θ ∈ [0, 2π] is the angular coordinate
along the cone cross-section (see Figure 3a). Hence, problem (3.15) can be recast as the
unconstrained minimisation problem:

min
κm,θ∈[0,2π]

{
U(κm, θ) =

(κm − κ̄m)2

2
+

(κma cos θ − κ̄d)2

2
+

(κmb sin θ − κ̄t)2

2

}
(3.18)

The stationarity conditions for this problem are ∂U/∂κm = 0 and ∂U/∂θ= 0, which may be
rewritten in the following form:

κm =
κ̄m + a κ̄d cos θ + b κ̄t sin θ

a2 cos2 θ + b2 sin2 θ + 1
, κ̄t

b
(

1 + a2
)

a (1 + b2)
cos θ + κ̄m

a2 − b2

2a (1 + b2)
sin 2θ= κ̄d sin θ.

(3.19)
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Using the first of the expressions above, one can eliminate the axial variable κm and rewrite the
energy U as a function of θ only, reducing the generic problem to the solution a one-degree-of-
freedom system. The equilibria are the solutionsU ′(θ) = 0 and their stability will be given directly
from the sign of U ′′(θ), where the prime denotes here the derivative with respect to θ.
Given the value of the angular coordinate θ on the cone, the corresponding curvature of the shell is
a uniaxial tensor k = k e(ϕ)⊗ e(ϕ) describing a cylindrical configuration, as depicted in Figure 3,
with axis orientation ϕ and magnitude k given by:

ϕ= arctan

(
1
4
√
β

tan

(
π − θ

2

))
, k= κm

1 +
√
β + cos θ(1−

√
β)

4
√
β
√√

β + ν
, (3.20)

where κm is calculated from (3.19). The first equation above relates the angular coordinate θ on the
cone with the orientation ϕ of the axis of maximal curvature of the actual shell configuration. For
β = 1, ϕ= (π − θ)/2. We recover below some known literature results in our framework, giving
useful insights for our design problem.

(c) Example: square-symmetric shell with isotropic inelastic curvature
Let us consider the case of a shell made of a square-symmetric material with a given isotropic
inelastic (target) curvatures k̄11 = k̄22 = k̄, k̄12 = 0. A square-symmetric material is a material
equally reinforced, or weakened, in two mutually orthogonal directions, and it is characterised
by β = 1 and α 6= 1 (the material is isotropic for α= 1). Then, the cone (3.14) has elliptical cross-
sections with the semi-axes a=

√
(1− ν)/(1 + ν) and b=

√
αa. Moreover, the point κ̄ lies on the

cone axis: according to the change of coordinates (3.10) and being β = 1 for a square-symmetric
material, one gets κ̄d = κ̄t = 0, κ̄m =

√
1 + ν k̄. The equilibrium equation reduces to

U ′(θ) =
κ̄2m

(
b2 − a2

)
sin 2θ

2
(
a2 cos2 θ + b2 sin2 θ + 1

)2 = 0. (3.21)

If the shell is not isotropic (α 6= 1,a 6= b), there are four solutions with θ(1,2,3,4) = 0, π/2, π, 3π/2.
By checking the sign of the second derivative of the energy, one can easily check that the stability
of these solutions depends on b/a=

√
α. We conclude that the shell is bistable for any α 6= 1 and:

• For α> 1, the stable equilibria are θ(1,3) = 0, π, corresponding to the two cylindrical
configurations of curvature magnitude k= k̄(1 + ν) oriented along the two material axes
ϕ= (π/2, 0).
• Forα< 1, the stable equilibria are θ(2,4) = π/2, 3π/2, corresponding to the two cylindrical

configurations of curvature magnitude k= 2k̄(1 + ν)/(1 + ν + α− αν) oriented along
the axes rotated by ϕ=±π/4 from the material ones.

For a geometric illustration of these results on the cone, see Figure 4.
For isotropic shells, α= β = 1, the cone of inextensible curvatures (3.14) has circular cross-

sections, a= b. The equilibrium equation (3.21) degenerates, being trivially verified for any θ ∈
[0, 2π]. All the cylindrical configurations with a curvature magnitude k= k̄(1 + ν) are equilibria,
independently of the orientation of the axis of maximal curvature. We say that the shell is neutrally
stable with the zero-stiffness mode corresponding to the precession of the axis of maximal curvature
(depicted by direction ϕ in Figure 3b). This case has been considered in [23], where the inelastic
effects were imposed by plastic deformations of an isotropic metallic shell. The results above
become transparent from Figures 4 bearing in mind the geometrical interpretation of the potential
energy of the shell as the distance ‖κ− κ̄‖2. All the points lying on a circular cross-section of the
cone have the same minimal distance from the point κ̄, i.e. the same elastic energy.

The result of the present inextensible shell model are valid in the "large curvature" regime. To
make this approximation more precise, Figure 5 compares the equilibrium curvature of the shell
as a function of the isotropic inelastic curvature as obtained with the present inextensible model
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(a) α< 1 (b) α= 1 (c) α> 1

Figure 4: Square-symmetric shells with isotropic inelastic curvatures: β = 1, k̄11 = k̄22 = k̄, and
k̄12 = 0. (a), (b) and (c) show the contour plot of the potential energy (3.18) on the cone
representing the inextensible constraint in the (κm, κd, κt) space (minimal values are in lighter
color). For α< 1 (a) and α> 1 (c) the shell is bistable, whilst in the isotropic case α= 1 (b), the
shell is neutrally stable. The energy barrier to pass from κ(1) to κ(2) is proportional to |α− 1|.

and an alternative uniform curvature model accounting for membrane deformations [2]. In the
extensible model the equilibrium shape is unique up to a critical inelastic curvature

k̄∗ =
8

(1 + ν)3/2
h

L2
, or κ̄∗m =

8

1 + ν

h

L2
, (3.22)

where h andL are the thickness and the radius of the initially flat disk, respectively. The extensible
model predicts multiple stable shapes for k̄ > k̄∗ and its results tend to those of the present
approximate inextensible model for k̄� k̄∗h/L2 (see [2] or [24] for the detailed calculations).
Only the case of an isotropic material (α= 1) is reported here, but analogous considerations are
valid for a generic orthotropic shell. As shown in [2,11], the results of the extensible uniform
curvature model are very close to those of full-field, fully nonlinear, finite element calculations.

4. Design of the actuation law
We consider the problem of designing an actuation strategy to control the shape of the shell by
applying inelastic curvatures of piezoelectric origin. In practice, a fundamental constraint is the
maximal inelastic curvature that the embedded actuation can exert. In a structure with a vanishing
stiffness deformation mode, we design an actuation law that moves the configuration of the shell
along the direction of minimal stiffness at each instant. This strategy will reduce the actuation
energy requirements, but it will demand a suitable multiparameter actuation.

We focus on the case of the cylindrical shell obtained by applying isotropic inelastic curvatures
to an initially flat disk, which has been treated in the previous Section. The geometric analogy of
the cone facilitates the design of suitable actuation strategies in terms of inelastic curvatures. Our
goal is to move the configuration of the shell by rotating the curvature axis along the (almost) zero-
stiffness mode corresponding to ellipses of (almost) constant energy on the cone, as illustrated in
Figure 4. These ellipses are parametrically described by a curvature tensor κ(t) in the form

κ(t) = κm{1, a cos t, b sin t}, t∈ [0, 2π]}. (4.1)
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(a) (b)

Figure 5: (a): Comparison of the equilibrium curvatures predicted by the extensible (red) [2] and
inextensible (black) uniform curvature models, and the finite element simulations (dots). The
present inextensible model gives a very good approximation of the inextensible model as soon
as k̄ > 2k̄∗, see equation (3.22). (b): Schematic illustration of the basic trigonometric identities
used to obtain the relation (5.2) between the (uniform) curvature k and the maximum peripheral
displacement w.

In order to drive the precession of the shell according to (4.1), the basic idea is to apply inelastic
curvatures κ̄(t) that describe ellipses centered on the cone axis at coordinate κ̄m as follows

κ̄(t) = {κ̄m, 0, 0}+ {0, ρ̄ a cos t, ρ̄ b sin t}, κ̄m > 0, ρ̄≥ 0. (4.2)

The first contribution stands for the isotropic plastic curvature of amplitude κ̄m. The second one
is a perturbation of amplitude ρ̄ and phase t, controlled by the piezoelectric actuators. In practice,
because of the limited actuation strains provided by piezoelectric materials, the amplitude of the
piezoelectric actuation ρ̄ should be considered much smaller of the plastic curvature κ̄m. In turn,
κ̄m should be sufficiently large to put the initially flat disk within the geometric non-linear regime,
namely κ̄m� κ̄∗m, see (3.22).

If the shell is perfectly isotropic (α= 1, a= b), a perturbation with an arbitrarily small
amplitude ρ̄ leads to a sequence of equilibrium points on the cone close to the desired circular
path (4.1). This physically means that, in a perfect isotropic system, a vanishing actuation (ρ̄→ 0)
is sufficient to drive a continuous precession of the maximal curvature axis along the set of
neutrally-stable configurations.

In practice, the conditions for perfect isotropy are never realised and the real behaviour of
the structure is different. We show that a minimal actuation threshold is required to drive the
precession of the shell, and we relate this threshold to the imperfections. To this end, we consider
the actuation problem for the more realistic case of weakly anisotropic shells with α 6= 1, for which
the cone forming the inextensible curvature manifold has an elliptic cross-section with a 6= b, see
(3.13) and Figure 4.

After introducing (4.2) into the second equation of (3.19), and some basic manipulations, we
find that the equilibria, in the form (3.17), should satisfy

(1 + tan2 θ)

(
tan θ − b2(1 + a2)

a2(1 + b2)
tan t

)2

=

(
a2 − b2

a2(1 + b2)

κ̄m
ρ̄ cos t

)2

tan2 θ. (4.3)

which, being a fourth order polynomial in tan θ, admits at most four distinct solutions. We study
how these solutions θ(i)(t) of (4.3) depend on the amplitude of the actuation ρ̄when t varies from
0 to π (the behaviour in [π, 2π] will be symmetric). We focus on the case with α> 1 (b > a), for
which at t= 0 the solution θ= 0 of (4.3) is stable, as shown in the previous Section and Figure 4c.
The case with α< 1 can be treated with minor modifications. Remember that, for β = 1, an angle
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θ on the cone corresponds to an orientation ϕ= (π − θ)/2 of the maximal curvature axis of the
equilibrium configuration, see (3.20).

ρ̄ > ρ̄∗∗ ρ̄∗ < ρ̄ < ρ̄∗∗ ρ̄ < ρ̄∗

(a) (b) (c)

Figure 6: In columns, the three possible actuation regimes according to the relative value of the
actuation amplitude ρ̄ with respect to the thresholds in (4.4). The figures in the top row show the
loci of the inelastic curvature κ̄(t) (grey) and of the resulting curvature at the equilibrium κ(θ(t))

(black) on the cone C. The bottom row reports the correspondence between the actuation phase
t and the angular coordinate θ; the gray curves indicate (stable or unstable) equilibria, the black
curves indicate the actual paths followed by the shell configuration.

It turns out that there are two thresholds for the actuation amplitude ρ̄, namely

ρ̄∗ :=
κ̄m (b2 − a2)

a2 + b2 + 2a2b2
, ρ̄∗∗ :=

κ̄m (b2 − a2)

b2 + a2b2
≥ ρ̄∗, (4.4)

separating the behaviour of the shell in three different regimes, as sketched in Figure 6:

(i) for ρ̄ > ρ̄∗∗ there is only one stable branch defining a continuous and monotonic relation
between the actuation phase t∈ [0, π] and the angular coordinate θ ∈ [0, π] on the cone.
This stable branch, θ= θ(1)(t), stems from (t= 0, θ= 0) and arrives for t= π in θ= π;
it is drawn as a thick black curve in Figure 6a for ρ̄/κ̄m = 0.5, a= 1, b= 1.5. A similar
actuation is therefore sufficient to drive continuously the stable equilibrium around the
cone. Correspondingly, the maximal curvature axis of the shell configuration undergoes
a complete quasi-static precession.

(ii) for ρ̄∗∗ > ρ̄ > ρ̄∗ there are several branches; the branch stemming from θ= 0 for t= 0

is stable until it reaches a turning point for some t= tc >π/2 and θ= θc <π/2. Thus
for t > tc the equilibrium must necessarily snap-through towards another stable branch,
namely the one passing in θ= π for t= π, see Figure 6b. A similar actuation is sufficient
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to drive the shell equilibrium around the cone but not continuously. At t= tc the shell
will dynamically snap with a sudden jump in the orientation of the maximal curvature
axis.

(iii) for 0< ρ̄ < ρ̄∗ again there are several branches; the branch θ(1)(t) stemming from θ= 0

for t= 0 is stable and continuous but along this branch the angular coordinate θ remains
strictly lower than π/2 for every t∈ [0, π]. Moreover, for t→ π we have θ(1)(t)→ 0, see
Figure 6c. Such level of actuation is not sufficient to drive the stable equilibrium of the
shell around the cone.

In conclusion, the actuation law (4.2) with t∈ [0, 2π] is able to drive a complete precession of
the maximal curvature axis, if the actuation radius ρ̄ is larger than the threshold value ρ̄∗. The
transition is quasi-static if ρ̄ > ρ̄∗∗, but is dynamic otherwise. The two thresholds are bounded
0≤ ρ̄∗ ≤ ρ̄∗∗ ≤ κ̄m (b− a). Hence, as the level of anisotropy vanishes (α→ 1, β→ 1), we have
b→ a and both ρ̄∗→ 0 and ρ̄∗∗→ 0. As anticipated, even a small actuation radius would then
be sufficient. Moreover, in the limit b→ a, Eq. (4.3) reduces to tan θ= tan t; thus as isotropic
conditions are approached, the actuation angle and the angular coordinate on the cone tend to
coincide.

5. Experimental prototype and results
We develop an experimental prototype implementing the ideas of the previous Section. We obtain
a bistable shell by plastically deforming an initially flat copper disk through a large inelastic
isotropic curvature k̄P . Special care has been devoted to achieve almost isotropic conditions
(α' 1), thus obtaining an almost neutrally-stable shell and reducing the energetic gap between
the minima. Hence, we design a multi-parametric piezoelectric actuation to introduce a controlled
inelastic curvature of piezoelectric origin, k̄V(t), so that the overall inelastic curvature,

k̄(t) = k̄P

 1

1

0

+ k̄V(t), (5.1)

will vary as in (4.2) and Figure 6. To this end, we use three pairs of piezoelectric patches bonded
on the upper surface of the shell, as shown in Figures 7a-b, and oriented along the directions
ϕ1 = π/2, ϕ2 =−π/6, ϕ3 = π/6. This configuration is inspired by strain-gauge rosettes used in
classical devices for tensorial strain measurement. It is designed to preserve the global isotropy
of the disk, when considering uniform curvature deformation modes.

(a) Plastic forming process
We start with a thin copper disk of circular shape (radius L= 122.5 mm and thickness h=

0.3 mm). The disk is, to a good approximation, initially stress-free and flat. It is made of a
nominally isotropic copper (Cua1 H14) with Young modulus E ' 124 GPa, Poisson ratio ν '
0.33, and mass density δ' 9690 Kg/m3. The flat disk has been manufactured through a rolling
process. With this geometry and material properties, the critical inelastic curvature (3.22) for
entering in the multistable regime is calculated to be k̄∗ ' 0.1 m−1.

We apply an almost isotropic plastic curvature by manually winding the copper disk in two
orthogonal directions around PVC cylinders, see Figure 1a. In order to achieve a homogeneous
state of plastic deformation all over the structure, several cycles of plastification are repeated with
PVC cylinders of progressively smaller diameters (160 mm, 140 mm, and finally 110 mm). Because
of the initial manufacturing process of the base material (rolling), the plastic yielding properties
are not perfectly isotropic. They show a preferred material orientation aligned with the rolling
direction. The results reported below are obtained by aligning one of the winding directions,
that we will denote by e1 and e2, with the rolling direction of the copper disk (e1). At the end
of the forming process the disk shows two stable, almost cylindrical, configurations. Excluding
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some narrow zones near the edges, the shell curvature at the equilibria is almost uniform. The
axis of maximum curvature is oriented either with the direction e1 (configuration (a), Figure 7a,
with ϕ= 0) or e2 (configuration (b), Figure 7b, with ϕ= π/2). We estimate the curvature of the
two configurations by measuring the maximal transverse displacement w at the peripheral points
through the following simple geometrical relation (see Figure 5b):

w=
1− cos(k L)

k
=
k L2

2
+ o(k2). (5.2)

The measured displacements are presented in the first row of Table 1. They correspond to a
curvature k(a) ' 5.7± 0.1 m−1 for the first configuration (ϕ= 0) and k(b) ' 5.5± 0.1 m−1 for the
second one (ϕ= π/2). Being k/k̄∗ ∼ 50, the use of an inextensible model is fully justified, see
Figure 5a. On the basis of the results of Section 3(c), the bistability and the kind of curvature at
the equilibria lead us to infer that the shell is not perfectly isotropic. The observed behaviour is
consistent to the one predicted for a square-symmetric shell, namely β = 1 andα> 1. For this case,
the relation between the maximal curvature at the equilibrium and the magnitude of the isotropic
inelastic curvature is k= k̄(1 + ν). Hence, we can estimate the inelastic curvature induced by the
plastification process as k̄P = k/(1 + ν) = 4.2± 0.1 m−1 taking k as the average of the curvatures
k(a) and k(b) of the two configurations.

Assuming β = 1, we perform a dedicated experiment to identify an appropriate value of the
dimensionless shear stiffness parameter α. We expect this parameter to be different from unity
because of the observed bistable behaviour of the shell and we speculate that this can be a
consequence of an anisotropic hardening during the plastification process. With the shell clamped
at its center and initially in the configuration (a), we hang two identical masses at the points
indicated in the inset of Figure 8a. We detect a critical value of the mass for which the equilibrium
configuration (a) with ϕ= 0 loses its stability and the shell switches to the configuration (b) with
ϕ= π/2. As detailed in the Appendix, this critical mass can be easily related to the dimensionless
shear stiffness parameter α in the uniform curvature inextensible model. We repeated the analog
experiment starting from the configuration (b). We find critical massesmc ' 32± 5g. In particular
we observed an important variation of the value of the critical mass when leaving the shell in a
given configuration for several hours or days. We attribute this effect to viscoelastic relaxation
phenomena in the prestressed shell, see for instance [25]. Manually alternating several times
the configuration of shell between the two stable equilibria can reduce this effect, restoring the
initial almost isotropic pre-stress distribution. We adopted this expedient as a good practice
before performing quantitative experiments. Using the relation (6.6) of the Appendix, we found
α' 1.08± 0.02. The results are presented in the first row of Table 1. Finally, after the plastification,
the parameters of the uniform curvature model (3.8) are

D= 0.0148 N m3, β = 1, ν = 0.33, α= 1.08, k̄P = 4.2m−1. (5.3)

(a) (b)

Figure 7: The two stable configurations and of the plastically deformed disk with the MFC
actuators, with ϕ= 0 (a) and ϕ= π/2 (b), respectively.
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(a) (b)

(c) (d)

Figure 8: (a-b): Numerical diagrams to identify the non-dimensional shear stiffness α from the
values of the critical mass mc for the stability loss and of the inelastic curvature k̄ (see Appendix
for details) without (a) and with MFC actuators (b). The contours are for constant values of α;
the red dots correspond to the identified values, whilst the gray areas indicate approximative
confidence intervals, see Table 1. (c): Actuation test with V1 = 0, V2 = V3 = V̄ ∈ [0, 1500]Volt

comparing the experimental measures of the transverse displacement of the point A in (d) with
the results of the uniform curvature model (UC) and a shell finite-element model implemented in
Abaqus (FE). (d): Mesh and deformed configuration of the FE model in the same actuation test;
the colours are the values of the curvature k11.

(b) Plastically deformed disk with MFC actuators
To actively control the inelastic curvature we use commercially available Macro-Fiber-Composite
(MFC) actuators from [26], model 8514P1, with dimensions 85× 14× 0.3mm. They are
composed of piezoelectric fibres embedded in an epoxy matrix and exploit the so-called d33
piezoelectric coupling effect under operating voltages ranging from−500V to 1500V . We bonded
the MFC patches in the configuration shown in Figures 7, while keeping the plastically deformed
shell in a flat configuration. We use the specific glue Loctite M121HP and a curing period of 48
hours at ambient temperature. The pairs of opposite patches along one direction are electrically
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Table 1: Measurements before and after bonding the Micro-Fiber-Composite (MFC) actuators.

Measurements Max curvatures Model parameters
w(a) w(b) mc k(a) k(b) α k̄P

Without MFC 4.1 cm 4.0 cm 32± 5 g 5.7 m−1 5.5 m−1 1.08± 0.02 4.2± 0.1 m−1

With MFC 3.2 cm 3.1cm 28± 5 g 4.4 m−1 4.2 m−1 1.08± 0.02 3.3± 0.1 m−1

connected in parallel and driven by the same electric voltage, i.e. each pair acts as a single
actuator along its direction. We denote by Vi the voltage of the pair aligned with the direction
e(ϕi) = {cosϕi, sinϕi}, with i= 1, 2, 3.

The effects of the MFCs are to (i) increase the bending stiffness of the disk and, more
importantly, (ii) introduce an additional inelastic curvature controlled by the applied voltages.

To theoretically estimate the parameters of the uniform curvature model (3.8) for the disk
with the piezoelectric actuators, we combine Classical Laminate Plate Theory (CLPT, [27])
with the hypotheses of uniform curvature and inextensibility. The MFCs can be considered as
orthotropic piezoelectric layers, with elastic properties E1 = 30.3 GPa, E2 = 15.9 GPa, ν12 = 0.31,
G12 = 5.5 GPa, where 1 is the direction aligned with the longest side of the MFC, see [26]. With
these values and with the properties (5.3) for the copper disk, we obtain the following updated
parameters for the bending stiffness matrix and the equivalent inelastic curvature after bonding
the MFC actuators1

D= 0.0183 N m3, β = 1, ν = 0.329, α= 1.065, k̄P = 3.28m−1. (5.4)

Interestingly, the shell remains globally square-symmetric. Its anisotropy, measured by the ratio
α, is only slightly affected by the placement of the PZT patches: hence the energetic gaps between
the equilibria is still small, see Figure 4a. The reduction of the equivalent inelastic curvature
after bonding the MFCs is due to the increased stiffness of the shell and the fact that the MFCs
are naturally flat. To validate these predictions, we repeat the same identification procedures of
Section 5(a) after bonding the MFCs. The results are shown in the second row of Table 1 and are in
a good agreement with (5.4). The equilibrium curvatures are significantly reduced, but the shell
is still bistable, see Figure 7, and largely verifies the inextensibility condition k∼ 40 k∗� k∗.

The piezoelectric effect inside each MFC actuator can be modelled through inelastic strains
proportional to the applied voltage in the form ε̄11 = δ11V , ε̄22 = δ12V , ε̄12 = 0, with δ11 = 0.72×
10−6V−1, δ12 =−0.38× 10−6V−1, see [26]. Applying CLPT, we find that the equivalent inelastic
curvature induced by the MFC actuators in Voigt notation is

k̄V(t) =

3∑
i=1

χ̄(ϕi)Vi(t), χ̄(ϕi) =

 χ1 cos2 ϕi + χ2 sin2 ϕi
χ1 sin2 ϕi + χ2 cos2 ϕi
(χ1 − χ2) (sin 2ϕi)/α

 (5.5)

where χ1 =−2.46 10−4 m−1V−1 and χ2 = +1.07 10−4 m−1V−1 are electromechanical coupling
coefficients representing the curvatures per unit voltage in the directions parallel and
perpendicular to the axis of the actuator, respectively. We perform a dedicated test to check the
estimates of the piezoelectric couplings: with the shell initially positioned in the equilibrium
configuration of Figure 7a with ϕ= 0, we connect in parallel the pairs 2 and 3, imposing a
voltage V2 = V3 = V̄ , while keeping V1 = 0. Figure 8c reports the measured displacement of the
peripheral point A of the shell (see Figure 8d) when varying V̄ in the range [0, 1500] Volt , and
compares it with the results of the uniform curvature (UC) model with the parameters (5.4)-(5.5)
and of a finite-element (FE) simulation. The finite-element model of the disk with MFC actuators

1Explicit calculations of the parameters are reported in the directory FromCLPTtoUCprecession in the Supplementary Material.
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is implemented using the commercial code Abaqus2. We use a fully nonlinear shell model
(S4R elements) and account for the plastification and the piezoelectric effect through equivalent
thermal inelastic strains, with the three-dimensional geometry and material parameters as inputs.
Figure 8d shows the mesh and the current configuration of the shell with the plastic curvature and
V2 = V3 = 1500 Volt. Overall, the agreement between the experimental results, the UC model, and
the FE model is satisfactory, considering the complexity of the physical system and the simplicity
of the UC model. The differences between the FE model and the experimental results can be
attributed to material nonlinearities of the MFC actuators at high voltages and to the effect of
the bonding layer, which is neglected in the FE and UC models. The errors between the UC and
the FE models can be explained by the fact that the UC model cannot account for non-uniform
curvatures.

(c) Piezoelectric controlled precession of the disk curvature axis
To obtain an inelastic curvature varying in time as in (4.2) and Figure 6, we impose the following
voltages on the three MFC pairs

V1(t) =
V̄

2
(1 + cos t), V2(t) = V1(t− 2π/3), V3(t) = V1(t+ 2π/3), (5.6)

which are in the form of a rotatory travelling wave parametrised by the amplitude V̄ and the
phase t. The allowable voltages are in the interval [−500, 1500] Volt, but the behaviour of the
MFC actuators is not symmetric for positive and negative voltages. Therefore, with (5.6), we have
chosen to keep the voltages always positive. According to (5.5), the corresponding piezoelectric
induced inelastic curvature is

k̄V(t) =
3(χ1 + χ2) V̄

4

 1

1

0

+
3(χ2 − χ1) V̄

8

 cos t

− cos t
2 sin t

α

 . (5.7)

Whilst the first term is an isotropic component and adds a negligible perturbation to initial plastic
curvature, k̄P� (χ1 + χ2)V̄ , the second term introduces the desired precession of the principal
axis of the inelastic curvature tensor as in (4.2). With these relations, one can easily find that the
thresholds ρ̄∗ and ρ̄∗∗ in (4.4) on the inelastic curvature translate to the following thresholds on
the actuating amplitude V̄ :

V̄ ∗∗ ' 2V̄ ∗ ' 4(α− 1)(1 + ν) k̄P
3(χ2 − χ1)

' 1300± 200 Volt. (5.8)

For the sake of simplicity, these expressions are reported in their linearised version for α close to 1;
the numerical value corresponds to the parameters reported in Section 5(a)-(b), and the confidence
interval roughly accounts for the uncertainty in the estimation of these parameters.

The analysis of Section 4 based on the uniform curvature model predicts a complete stable
quasi-static precession of the axis of maximal curvature of the shell when applying the actuation
law (5.6) with V̄ > V̄ ∗∗, whilst for V̄ ∗ < V̄ < V̄ ∗∗ the precession will include a snap-through
phenomenon. For V̄ < V̄ ∗ the shell will remain in a neighbourhood of the initial configuration.

To experimentally validate the effectiveness of the proposed actuation law, we apply the
voltages (5.6) on the three MFC pairs by using the three-channel high-voltage amplifier HVA1500-
3 by Smart Material GmbH [26]. The input signals are digitally generated in Matlab [28] and
transferred to the amplifier through a multi-channel D/A converter. The shell is initially clamped
horizontally at its center onto a vertical rod using a strong locating magnet. We record the time
evolution of the deformed shape through a standard camera giving a top view of the shell.
From the frames of the video we reconstruct, using ImageJ software [29], the orientation of the
principal axis of curvature at each instant t.

2The Abaqus scripts arte reported in the directory Abaqus of the Supplementary Material.
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(b) (c)

Figure 9: Precession of the curvature axis of the disk controlled through the multiparameter
piezoelectric actuation. (a): Loci of inelastic curvature (small blue ellipse) and resulting curvature
at the equilibrium (continuous line: UC; points: experiments) when applying the actuation law
(5.6). The cone represents the inextensibility constraint detk = 0. The insets, A to D, display
the shell configurations observed experimentally. (b) and (c): Orientation of the axis of maximal
curvature (θ or ϕ) when varying the inelastic curvature (4.2) for t in [0, 2π]. (b): Comparisons
between experimental result (red dots, π/150 rad/s) and the predictions of the FE (blue triangles)
and UC (black line) models. (c): Experimental results for the actuation rates π/30, π/90 and
π/150 rad/s.

Figure 9 illustrates the main experimental results, anticipated in Figure 2: when varying
the phase t of the actuation law (5.6), the axis of maximal curvature of the disk experiences a
complete, quasi-static, precession (see also the Videos in Supplementary Materials). The rotation
of the disk is only apparent, as evident from the invariant orientation of the MFC patches: the
angular velocity of the material points is null. The results shown in Figure 9 are for V̄ = 1500Volt.
The minimal threshold to obtain the quasi-static precession is V̄ ' 1200− 1400 Volt, a result in
striking quantitative agreement with the theoretical prediction (5.8) of the uniform curvature
model. In Figure 9a, the small blue ellipse shows the variation of the inelastic curvature in the
(kx, ky, kxy) space when applying the actuation law (5.6). This inelastic curvature is composed of
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a large constant plastic component, the red line in Figure 9a, and a small additional piezoelectric
contribution controlled by the applying voltage, which is varying in time. The large ellipse reports
the associated average curvature tensors at the equilibrium, obtained either experimentally (black
dots) or with the UC model (continuous line). The curvatures at the equilibrium respect to a large
degree the inextensibility constraint detk = 0, represented by the yellow cone.

Figure 9b-c gives the correspondence between the orientation t of the inelastic curvature and
the equilibrium curvature, ϕ (or θ). Figure 9b compares the experimental results to the prediction
of the FE and UC models. The FE and UC models are in very close agreement. Dedicated
simulations, not reported here, show that the discrepancies with the experimental results and,
in particular, the fact that in the experiment θ > π for t= π could be explained by the effect of
nonvanishing D13, D23 terms in the bending stiffness matrix (non-orthotropy). Figure 9c reports
the experimental results obtained when varying the angular velocity of the rotation of the inelastic
curvature axis from π/30 to π/150 rad/s, showing that, in this regime, the phenomenon is almost
rate-independent.

6. Conclusions
We proved a novel concept to effectively control large structural shape-changes through a weak
multiparameter piezoelectric actuation. The key result is outlined in Figure 9a: by plastically
deforming an initially flat disk, we conceived a cylindrical shell where the embedded piezoelectric
actuation generates small perturbations of the initial inelastic curvature but induces a complete
precession of the shell curvature axis. The device behaves as a gearless motor, where the
multiparameter piezoelectric actuation generates a large-amplitude travelling wave for the
transverse displacement.

With standard bending actuation the maximum structural displacements induced by the
piezoelectric actuation are of the order of 2 mm (see Figure 8c), for a disk of thickness 0.3 mm
and radius 12 cm. With the proposed actuation technique, we are able to obtain displacements
of 3.2 cm; such a displacement can actually be increased by increasing the inelastic curvature k̄P
or the disk radius, but the forces exerted in quasi-static conditions remain small, see (6.5) in the
Appendix for an order of magnitude. More in general, while with standard actuation techniques
the achievable curvature/voltage ratio is of the order of χi, leveraging the vanishing stiffness
mode the proposed strategy induces a variation of the curvature per unit voltage of the order of

k̄P/V̄
∗∗ ∼ χi/|α− 1|, (6.1)

as shown by (5.8). The amplifying factor is theoretically infinite for an ideal perfectly isotropic,
neutrally stable, shell.

We studied the specific case of an almost neutrally stable disk obtained after a suitable
plastification process. The use of a fully nonlinear inextensible shell model based on the uniform
curvature hypothesis allowed us to get a full understanding of the possible equilibrium shapes
and to design the appropriate multi-parametric actuation law. We showed that the key design
parameter is the deviation of the shear stiffness, α in (3.9), from the one of an isotropic shell.
We were able to control this parameter in experiments and theoretical models, showing how it
determines the actuation threshold required to obtain the precession of the curvature axis (5.8).

We believe that this work can provide new ideas to address the important technological
problem of controlling the shape of structures through embedded active materials, a fundamental
issue of flexible robotics. The concept illustrated here can be extended to more complex structures,
such as helical shells [30] and multistable strips [31]. We fabricated an experimental prototype of
sub-metre scale. However, the key concepts are scale invariant and the same ideas can be applied
to micro-electro-mechanical systems (MEMS). In MEMS the elastic mismatch, arising during the
deposition process of thin films, can replace the role of the initial plastic curvature [32]. Further
interesting perspectives are the applications to flexible robot locomotion [33,34] and the nonlinear
energy harvesting exploiting the direct piezoelectric effect [35].
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Appendix
In this Appendix we derive the stability threshold of the equilibrium configurations θ= 0, π when
applying transverse forces f as sketched in the insets of Figures 8a-b. This calculation is used to
identified the material parameter α in Table 1.

The total energy Et is obtained subtracting the work of external forces Lf to the elastic energy
Eb = 2DU(κm, θ):

Et(κm, θ) = 2DU(κm, θ)− Lf , Lf :=−2fL2κm
1 + cos θ

2
√

1 + ν
, (6.2)

where U(κm, θ) is given in (3.18). For α≥ 1, there exist equilibria θ= 0, π with

κm =

(√
β + ν

)
2D
√
ν + 1

· fL2(1 + cos θ)− 2Dκ̄m
√
ν + 1(√

β − ν
) (
α sin2 θ + cos2 θ

)
+
√
β + ν

. (6.3)

Inspecting the Hessian matrix of second derivatives of the energy, we find that the equilibrium
θ= 0 is stable for

(
fL2 −D

√
ν + 1κm

) (α− 1)
(√
β − ν

) (
2fL2 − 2D

√
ν + 1κm

)
2
√
β

+ fL2

≥ 0. (6.4)

The critical values of the forces, leading to a vanishing stability margin, are, then, found to be

fc1 =
Dκ̄m

√
1 + ν

L2
·

(α− 1)
(√
β − ν

)
α
(√
β − ν

)
+ ν

, fc2 =
Dκ̄m

√
1 + ν

L2
, (6.5)

where for α≥ 1, fc1 ≤ fc2. Therefore, one can estimate α measuring the lowest critical value of
the force f leading to instability. We obtain

α' 1 +
fc1L

2√β(1− ν)

k̄mY t3
(√
β − ν

) . (6.6)
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