On the ultimate energy bound of solutions to some forced second order evolution equations with a general nonlinear damping operator

Abstract : Under suitable growth and coercivity conditions on the nonlinear damping operator g which ensure non-resonance, we estimate the ultimate bound of the energy of the general solution to the equationüequation¨equationü(t) + Au(t) + g(˙ u(t)) = h(t), t ∈ R + , where A is a positive selfadjoint operator on a Hilbert space H and h is a bounded forcing term with values in H. In general the bound is of the form C(1 + ||h|| 4) where ||h|| stands for the L ∞ norm of h with values in H and the growth of g does not seem to play any role. If g behaves lie a power for large values of the velocity, the ultimate bound has a quadratic growth with respect to ||h|| and this result is optimal. If h is anti periodic, we obtain a much lower growth bound and again the result is shown to be optimal even for scalar ODEs.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01577067
Contributeur : Alain Haraux <>
Soumis le : jeudi 24 août 2017 - 18:30:10
Dernière modification le : jeudi 11 janvier 2018 - 06:12:16

Fichiers

UB-2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01577067, version 1
  • ARXIV : 1708.07639

Collections

Citation

Alain Haraux. On the ultimate energy bound of solutions to some forced second order evolution equations with a general nonlinear damping operator. 2017. 〈hal-01577067〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

14