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Abstract

Under suitable growth and coercivity conditions on the nonlinear damping operator
g which ensure non-resonance, we estimate the ultimate bound of the energy of the
general solution to the equation ü(t) + Au(t) + g(u̇(t)) = h(t), t ∈ R

+, where A is
a positive selfadjoint operator on a Hilbert space H and h is a bounded forcing term
with values in H. In general the bound is of the form C(1 + ||h||4) where ||h|| stands
for the L∞ norm of h with values in H and the growth of g does not seem to play any
role. If g behaves lie a power for large values of the velocity, the ultimate bound has a
quadratic growth with respect to ||h|| and this result is optimal. If h is anti periodic,
we obtain a much lower growth bound and again the result is shown to be optimal
even for scalar ODEs.
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1 Introduction.

In this paper we investigate a specific quantitative aspect of solutions to the equation

ü(t) + Au(t) + g(u̇(t)) = h(t)

where V is a real Hilbert space, A ∈ L(V, V ′) is a symmetric, positive, coercive operator,
g ∈ C(V, V ′) is monotone and h is a forcing term. This equation has been intensively
studied in the Literature when g is a local damping term, covering the following topics:
existence of almost periodic solutions, asymptotic behavior of the general solution, rate of
decay to 0 of the difference of two solutions in the energy space in the best cases, cf.e.g.
[2, 15, 3, 4, 7, 8, 10, 12, 11, 14, 16]. In the more recent paper [1], a very general result
generalizing the theorems of [11] on boundedness and compactness has been proved for
possibly nonlocal damping terms. However when looking at the arguments of [1] and [11]
and trying to extract an estimate of the solutions for t large, we find immediately that the
methodology is not adapted to that purpose. The present article aims at improving the
situation. Actually we devise a new technique which allows to “forget” the influence of the
initial data from the very beginning of the estimates, thus dropping all unnecessary terms
related to transient behavior. The plan of the paper is as follows: In Section 2, we introduce
the basic tools used in the statements and proofs of the main results. Section 3 is devoted to
a very general case. Section 4 covers a still rather general case where the damping operator
behaves like a power for large values of the velocity, this for instance allows to encompass
any polynomial map, and we give a short list of examples in the field of PDEs of the second
order in t for which our result is optimal. In section 5 we establish two partial results when
the forcing is anti-periodic, a situation which is known (cf. e.g. [13]) to prevent resonance
under weaker conditions on g than the general periodic case. We obtain a better estimate
which is optimal in finite dimensions, but in the infinite dimensional we can only slightly
improve the general estimate and we do not reach what one might expect to be the optimal
result.

2 Functional framework and the initial value problem.

In this section, we recall the exact functional framework that shall be used in the formulation
as well as in the proofs of our new results. We follow the presentation from [1] at the exception
of a small difference for the approximation of weak solutions.

2.1 Monotone operators

Let H be a real Hilbert space endowed with an inner product (., .)H. We recall that a map
A defined on a subset D = D(A) with values in H is monotone if

∀(U, Û) ∈ D ×D, (AU −AÛ , U − Û)H ≥ 0.
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In addition A is called maximal monotone if

∀F ∈ H, ∃U ∈ D(A) AU + U = F .

The following result is well-known (cf. H. Brezis [5]) .

Proposition 2.1. If A is maximal monotone, for each T > 0, each U0 ∈ D(A) and F =
F (t) ∈ W 1,1(0, T ;H) there is a unique function U ∈ W 1,1(0, T ;H) with U(t) ∈ D(A)) for

almost all t ∈ (0, T ) , U(0) = U0 and such that for almost all t ∈ (0, T )

U ′(t) +AU(t) = F (t). (2.1)

In addition if for some Û0 ∈ D(A) and Ĥ ∈ W 1,1(0, T ;H) we consider the solution Û ∈
W 1,1(0, T ;H) with Û(t) ∈ D(A)) for almost all t ∈ (0, T ) , Û(0) = Û0 of

Û ′(t) +AÛ(t) = F̂ (t),

then the difference satisfies the inequality

∀t ∈ [0, T ], |U(t)− Û(t)| ≤ |U0 − Û0|+

∫ t

0

|F (s)− F̂ (s)|ds.

This proposition allows one to define by density, for any U0 ∈ D(A) and F = F (t) ∈
L1(0, T ;H) a weak solution of (2.1) such that U(0) = U0, cf. H. Brezis [5].

2.2 Functional setting

Throughout this article we let H and V be two Hilbert spaces with norms respectively
denoted by ‖.‖ and |.|. We assume that V is densely and continuously embedded into H .
Identifying H with its dual H ′, we obtain V →֒ H = H ′ →֒ V ′. We denote inner products
by (.,.) and duality products by 〈·, ·〉; the spaces in question will be specified by subscripts.
The notation 〈f, u〉 without any subscript will be used sometimes to denote 〈f, u〉V ′,V . The
duality map: V → V ′ will be denoted by A. We observe that A is characterized by the
property

∀(u, v) ∈ V × V, 〈Au, v〉V ′,V = (u, v)V .

2.3 Weak solutions

We consider the dissipative evolution equation:

ü+ Au+ g(u̇) = h(t) (2.2)

where g ∈ C(V, V ′) satisfies

∀(v, w) ∈ V × V, 〈g(v)− g(w), v − w〉 ≥ 0. (2.3)
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We consider the (generally unbounded) operator A defined on the Hilbert space H = V ×H
by

D(A) = {(u, v) ∈ V × V, Au+ g(v) ∈ H}

and
∀(u, v) ∈ D(A), A(u, v) = (−v, Au+ g(v)).

Lemma 2.2. The operator A is maximal monotone.

Proof. Let U = (u, v) and Û = (û, v̂) be two elements of D(A). We have

(AU −AÛ , U − Û)H = −(u − û, v − v̂)V + (Au+ g(v)− Aû− g(v̂), v − v̂)H

−(u− û, v − v̂)V + 〈Au+ g(v)− Aû− g(v̂), v − v̂〉V ′,V

since Au+ g(v) ∈ H and Aû+ g(v̂) ∈ H while v, v̂ are in V . This reduces to

(AU −AÛ , U − Û)H = 〈g(v)− g(v̂), v − v̂〉V ′,V ≥ 0

Hence A is monotone. To prove that A is maximal monotone we are left to show that for
any F = (ϕ, ψ) ∈ H the following equation

u− v = ϕ, Au+ g(v) + v = ψ

has a solution U = (u, v) ∈ D(A). This is equivalent to finding a solution v ∈ V of

Av + g(v) + v = ψ −Aϕ ∈ V ′

But now the operator C ∈ C(V, V ′) defined by

∀v ∈ V, Cv = Av + g(v) + v

is continuous and coercive: V → V ′. Therefore by Corollary 14 p. 126 from H. Brezis [6], C
is surjective. Finally A is maximal monotone as claimed.

As a consequence of Proposition 2.1, for any h ∈ L1
loc(R

+, H) and for each (u0, u1) ∈ V×H
there is a unique weak solution

u ∈ C(R+, V ) ∩ C1(R+, H)

of (2.2) such that u(0) = u0 and u̇(0) = u1. This solution can be recovered on each compact
interval [0, T ] by approximating the initial data by elements of the domain, the forcing term
h by C1 functions and passing to the limit: the limit is independent of the approximating
elements so chosen. The next result shows that in fact the approximation can even be made
uniform on R

+.
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2.4 Density of strong solutions

Lemma 2.3. For any h ∈ L2
loc(R

+, H) and for each (u0, u1) ∈ V × H and for each δ > 0
there exists (w0, w1) ∈ D(A) and k ∈ C1(R+, H) for which the solution w ∈ W 1,1

loc (R
+, V ) ∩

W 2,1
loc (R

+, H) of
ẅ + Aw + g(ẇ) = k(t); w(0) = w0, ẇ(0) = w1

satisfies

∀t ≥ 0, ‖u(t)− w(t)‖+ |u̇(t)− ẇ(t)| ≤ δ

and in addition

∀t ∈ R
+,

∫ t+1

t

|k(s)− h(s)|2ds ≤ 2δ.

Proof. It suffices to use the last result of Proposition 2.1 by observing that for any h ∈
L2
loc(R

+, H) we can find k ∈ C1(R+, H) such that

∀n ∈ N,

∫ n+1

n

|k(s)− h(s)|2ds ≤ δ2−2n−2.

Choosing (w0, w1) ∈ D(A) such that ‖w0 − u0‖+ |w1 − v1| ≤ δ2−1 the result follows imme-
diately

3 A general ultimate bound.

In this section we give a quite different proof, in a slightly more general case, of a result
stated in [10], Remark 1.2, b) p. 167. We assume that h ∈ S2(R+, H) with

S2(R+, H) = {f ∈ L2
loc(R

+, H), sup
t∈R+

∫ t+1

t

|f(s)|2ds <∞}

and we set

||h||S2(R+,H) = { sup
t∈R+

∫ t+1

t

|h(s)|2ds}1/2

In particular if h ∈ L∞(R+, H) , then h ∈ S2(R+, H) and ||h||S2(R+,H) ≤ ||h||L∞(R+,H).

Theorem 3.1. Assume that g ∈ C(V, V ′) satisfies the condition (2.3) and

∃γ > 0, ∃C1 ≥ 0 ∀v ∈ V, 〈g(v), v〉 ≥ γ|v|2 − C1. (3.1)

∃K > 0, ∃C2 ≥ 0 ∀v ∈ V, ‖g(v)‖V ′ ≤ C2 +K〈g(v), v〉. (3.2)
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Then any solution u ∈ C(R+, V ) ∩ C1(R+, H) of (2.2) is bounded on R
+ in the sense that

u has bounded range in V and u̇ has bounded range in H. In addition we have for some

constant K depending only on A and g

lim sup
t→∞

(|u̇(t)|2 + ‖u(t)‖2) ≤ K(1 + ||h||4S2(R+,H))

Proof. The boundedness result is known for local damping operators g , cf. the second case
of Theorem IV.2.1.1 of [11] and in the general case it can be proved by adapting in this
case the method from [1]. However even in the local case these results cannot provide a
reasonable estimate of the ultimate bound. We start by an estimate in the case of a strong
solutions, i.e. we assume u ∈ W 1,1

loc (R
+, V ) ∩W 2,1

loc (R
+, H). The general case will follow by

density. Let

E(t) =
1

2
(|u̇|2 + ‖u‖2)

Under the regularity conditions [u0, v0] ∈ V × V , γ(0, v0) ∈ H and h ∈ W 1,1
loc (R

+, H),
t→ E(t) is absolutely continuous and we have ∀t ∈ R

+:

d

dt
E(t) = (h, u̇)− 〈g(u̇), u̇〉. (3.3)

In addition t→ (u(t), u̇(t)) is absolutely continuous and

d

dt
(u(t), u̇(t)) = |u̇|2 − ‖u‖2 − 〈g(u̇), u〉+ (h, u).

By using (3.2), we obtain:

d

dt
(u(t), u̇(t)) ≤ |u̇|2 − ‖u‖2 + ‖u‖ {P |h|+ C2 +K〈g(u̇), u̇〉} (3.4)

with
P = sup{|u|, u ∈ V, ‖u‖ = 1}.

Introducing
Φ(t) = 2E(t), ∀t ≥ 0,

we are reduced to estimate the upper limit bound for Φ(t). Let us introduce

M = lim sup
t→∞

Φ(t)

and let us consider a sequence of times tn tending to infinity for which

Φ(tn) ≥M − 1/n

In addition for n large enough we have tn ≥ τ and

Φ(tn − τ) ≤M + 1/n
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where τ is any fixed positive number to be chosen later. Therefore by integrating (3.3) on
[tn − τ, tn] we find

∫ tn

tn−τ

〈g(u̇), u̇〉dt ≤ 1/n+

∫ tn

tn−τ

(h, u̇〉dt ≤ 1/n+
γ

2

∫ tn

tn−τ

|u̇|2dt+
1

2γ

∫ tn

tn−τ

|h|2dt

As a consequence of (3.1) we deduce

∫ tn

tn−τ

〈g(u̇), u̇〉dt ≤ 2/n+
1

γ

∫ tn

tn−τ

|h|2dt+ C3 (3.5)

and
∫ tn

tn−τ

|u̇|2dt ≤ C4/n+ C5

∫ tn

tn−τ

|h|2dt+ C6 (3.6)

which provides an average bound of the kinetic part independent of the initial data and the
transient behavior. This is remarkable since we only used the properties Φ(tn) ≥ M − 1/n
and Φ(tn−τ) ≤M+1/n to express the fact that t is large. By combining these two estimates
we also find an estimate of the form

|Φ(t)− Φ(s)| ≤ C7(1 +

∫ tn

tn−τ

|h|2dt) (3.7)

valid for all s, t in [tn − τ, tn]. As a consequence if we had an L1 estimate of the total energy
instead of the kinetic part the proof would be completed with exponent 2 instead of 4. The
difficulty in fact comes from the potential energy. From (3.4), by integrating on [tn − τ, tn]
we find
∫ tn

tn−τ

‖u‖2dt ≤

∫ tn

tn−τ

|u̇|2dt+

∫ tn

tn−τ

[‖u‖ {P |h|+ C2 +K〈g(u̇), u̇〉}]dt+ |[(u(t), u̇(t))]tntn−τ |

Recalling the notation M = lim supt→∞ Φ(t) we find

∫ tn

tn−τ

‖u‖2dt ≤

∫ tn

tn−τ

|u̇|2dt+M1/2

∫ tn

tn−τ

[{P |h|+ C2 +K〈g(u̇), u̇〉}]dt + C8M (3.8)

where C8 does not depend on τ . Combining (3.6) and (3.8) we obtain

∫ tn

tn−τ

Φ(t)dt ≤ C5

∫ tn

tn−τ

|h|2dt+ C9 +M1/2

∫ tn

tn−τ

[{P |h|+ C2 +K〈g(u̇), u̇〉}]dt+ C8M (3.9)

and by (3.5) this implies

∫ tn

tn−τ

Φ(t)dt ≤ C10(1 +

∫ tn

tn−τ

|h|2dt)(1 +M1/2) + C8M (3.10)
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Finally by combining this last inequality with (3.7) we end up with

(τ − C8)M ≤ C11(1 +

∫ tn

tn−τ

|h|2dt)(1 +M1/2) (3.11)

Fixing τ ≥ 1 + C8, the result now follows easily since

∫ tn

tn−τ

|h|2dt ≤ (1 + τ)||h||2S2

The general case of weak solutions follows easily by density relying on Lemma 2.3.

Remark 3.2. This ultimate bound has been obtained under the most general known as-
sumption ensuring boundedness of trajectories. It seems not to depend on the kind of
damping operator as long as the coerciveness and growth conditions are satisfied. We have
absolutely no idea whether it has a chance to be optimal in some cases. A more natural
quadratic estimate is valid in many cases as we shall see in the next section.

4 The case of a power-like damping term

For the main result of this section, we need to introduce an additional Banach space Z such
that

V ⊂ Z ⊂ H

with continuous imbeddings. The norm in Z of a vector z ∈ Z will be denoted by ||z||Z .

4.1 Main result

Theorem 4.1. Assume that g ∈ C(V, V ′) satisfies the condition (2.3) and for some α ≥ 0
we have

∃γ > 0, ∃C1 ≥ 0 ∀v ∈ V, 〈g(v), v〉 ≥ γ||v||α+2
Z − C1. (4.1)

∃K > 0, ∃C2 ≥ 0 ∀v ∈ V, ‖g(v)‖V ′ ≤ C2 +K||v||α+1
Z . (4.2)

Then any solution u ∈ C(R+, V ) ∩ C1(R+, H) of (2.2) is bounded on R
+ in the sense that

u has bounded range in V and u̇ has bounded range in H. In addition we have for some

constant K depending only on A and g

lim sup
t→∞

(|u̇(t)|2 + ‖u(t)‖2) ≤ K(1 + ||h||2S2(R+,H))

Proof. We start as in the proof of Theorem 3.1: by integrating (3.3) on [tn − τ, tn] we find

∫ tn

tn−τ

〈g(u̇), u̇〉dt ≤ 1/n+

∫ tn

tn−τ

(h, u̇〉dt ≤ 1/n+
γ

2

∫ tn

tn−τ

||u̇||α+2
Z dt+ C(γ)

∫ tn

tn−τ

|h|
α+2

α+1dt
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As a consequence of (4.1) we deduce , since n ≥ 1,

∫ tn

tn−τ

〈g(u̇), u̇〉dt ≤ C(γ, τ)[

∫ tn

tn−τ

|h|2dt]
α+2

2α+2 + C3 (4.3)

and
∫ tn

tn−τ

|u̇|2dt ≤ C4 + C5(γ, τ)

∫ tn

tn−τ

|h|2dt (4.4)

From (4.3) we also deduce the important new estimate

∫ tn

tn−τ

||u̇||α+1
Z dt ≤ C6 + C7(γ, τ){

∫ tn

tn−τ

|h|2dt}1/2 (4.5)

and by (4.2) this implies

∫ tn

tn−τ

||g(u̇)||V ′dt ≤ C8 + C9(γ, τ){

∫ tn

tn−τ

|h|2dt}1/2 (4.6)

Recalling the notation M = lim supt→∞ Φ(t) we now find

∫ tn

tn−τ

‖u‖2dt ≤

∫ tn

tn−τ

|u̇|2dt+ C9(γ, τ)M
1/2{

∫ tn

tn−τ

|h|2dt}1/2 + C10M + C11 (4.7)

where C10 does not depend on τ . Then by using Cauchy-Schwarz

∫ tn

tn−τ

‖u‖2dt ≤ C12(γ, τ)

∫ tn

tn−τ

|h|2dt+ (C10 + 1)M + C11 (4.8)

By choosing τ large enough we obtain, as a consequence of (4.8) and (4.4), the inequality

∫ tn

tn−τ

Φ(t)dt ≤ C12(γ)

∫ tn

tn−τ

|h|2dt+ C13 (4.9)

We conclude by using

|Φ(t)− Φ(s)| ≤ C14(γ)(1 +

∫ tn

tn−τ

|h|2dt) (4.10)

which is valid for all s, t in [tn − τ, tn] and follows easily from 4.3 and 4.4.

Remark 4.2. This result is optimal. For instance if we consider an eigenvector ϕ of A
corresponding to the eigenvalue λ > 0, then for each k > 0, kϕ is a stationary solution of
the equation with source term h(t) ≡ kλϕ for any dissipative operator g. This shows that
the ultimate bound of the energy is at least quadratic with respect to the size of the source
term.
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4.2 Examples

In this section, Ω denotes a bounded open domain of RNwith C2 boundary and α ≥ 0, c > 0.
We consider four simple special cases

Example 1: The wave equation with local damping

{

utt + c|ut|
αut −∆u = h(t, x), in R+ × Ω,

u = 0 on R+ × ∂Ω.
(4.11)

Here V = H1
0 (Ω), H = L2(Ω) and Z = Lα+2(Ω). We assume (N − 2)α ≤ 2.

Example 2: The wave equation with nonlinear averaged damping

{

utt + c[
∫

Ω
ut

2(t, x)dx]
α

2 ut −∆u = h(t, x), in R+ × Ω,

u = 0 on R+ × ∂Ω.
(4.12)

Here V = H1
0 (Ω) and H = L2(Ω) = Z.

Example 3: A clamped plate equation with nonlinear structural averaged damp-

ing

{

utt − c[
∫

Ω
|∇ut|

2dx]
α

2 ∆ut +∆2u = h(t, x), in R+ × Ω,

u = |∇u| = 0 on R+ × ∂Ω.
(4.13)

Here V = H2
0 (Ω), H = L2(Ω) and Z = H1

0 (Ω).

Example 4: A simply supported plate equation with nonlinear structural aver-

aged damping

{

utt − c[
∫

Ω
|∇ut|

2dx]
α

2 ∆ut +∆2u = h(t, x), in R+ × Ω,

u = ∆u = 0, on R+ × ∂Ω.
(4.14)

Here V = H2 ∩H1
0 (Ω), H = L2(Ω)and Z = H1

0 (Ω).

As a consequence of Theorem 4.1 we obtain immediately

Corollary 4.3. In all the four examples, Let h ∈ S2(R+, H).Then any solution u ∈ C(R+, V )∩
C1(R+, H) of (2.2) is bounded on R

+ in the sense that u has bounded range in V and u̇ has

bounded range in H. In addition we have for some constant K independent of h and the

initial data

lim sup
t→∞

(|u̇(t)|2 + ‖u(t)‖2) ≤ K(1 + ||h||2S2(R+,H))
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Remark 4.4. In [1], for the 4 previous examples, the authors proved the existence of a
unique almost periodic solution when h is an S2- almost periodic source. In this case (in
particular if h is periodic) the ultimate bound coincides with the supremum of the energy of
the almost periodic solution. Actually, if we try to estimate directly the periodic solution,
some boundary (in time) term disappear but the main part of the estimate is not much
simpler. In addition we know that the estimate is essentially optimal, only the multiplicative
constants might be worked out if one wants a more precise inequality.

5 Partial results in the anti-periodic case.

If g is odd and h is τ -anti periodic, i.e. if we have

h(t + τ) = −h(t)

the interesting solutions are the anti-periodic ones, cf.e.g. [13] for existence results. Since
such solutions have mean-value 0, the solution can be estimated through its time-derivative,
and because the estimate of the derivative is generally much better, we can expect an im-
provement on the energy bound.

This idea is perfectly valid if H is finite-dimensional, since then u and u̇ belong to the same
space, but otherwise we have a problem to reach the norm of u in V . At the present time
we do not know what happens if dimH = ∞. For the time being we can only prove the
following partial results.

Proposition 5.1. Assume that V = H, h ∈ C(R, H) is τ -anti periodic, that g ∈ C(H,H)
satisfies the condition (2.3) and for some α ≥ 0 we have

∃γ > 0, ∃C1 ≥ 0 ∀v ∈ H, 〈g(v), v〉 ≥ γ|v|α+2 − C1. (5.1)

∃K > 0, ∃C2 ≥ 0 ∀v ∈ H, |g(v)| ≤ C2 +K|v|α+1. (5.2)

Then any τ -antiperiodic solution u of (2.2) is such that

sup
t∈R

(|u̇(t)|2 + |u(t)|2) ≤ C(1 + ||h||
2

α+1

L∞(R,H))

where C is independent of h.

Proof. The starting point is the same as for the proof of Theorem 4.1. From the inequality

∫ 2τ

0

〈g(u̇), u̇〉dt ≤ C(γ, τ)[

∫ 2τ

0

|h|2dt]
α+2

2α+2 + C3 (5.3)
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we deduce the more precise estimate

∫ 2τ

0

|u̇|2dt ≤ C4 + C5(γ, τ)[

∫ 2τ

0

|h|2dt]
1

α+1 (5.4)

which implies, since u has mean-value 0,

sup
t∈[0,2τ ]

|u(t)|2 ≤ C(1 + ||h||
2

α+2

L∞(R,H)) (5.5)

To obtain the uniform bound on u̇, the trick now consists in evaluating the maximum of
Φ(t) = |u̇|2 + |A1/2u|2. At a maximum point θ the derivative vanishes, which gives

〈g(u̇), u̇〉 = (h, u̇)

hence
|u̇(θ)|2 ≤ C ′(1 + |h|

2

α+1 )

This implies

max
t∈[0,2τ ]

Φ(t) = Φ(θ) ≤ C ′′(1 + ||h||
2

α+1

L∞(R,H)))

and the conclusion follows immediately.

Remark 5.2. This result is optimal. For instance if we consider an eigenvector ϕ of A
corresponding to the eigenvalue λ > 0, then for each k > 0, uk(t) = k cos(λ1/2t)ϕ is a
solution of the equation

ü+ Au+ g(u̇) = g(−kλ1/2 sin(λ1/2t)ϕ) =: h(t)

and the L∞ norm of the source term is less than a constant times kα+1 for k large. Both u
and h are anti-periodic.

We have a weaker result (intermediate between Theorem 4.1 and Proposition 5.1) which
is also valid in the infinite dimensional setting and can be stated as follows:

Proposition 5.3. Assume that the conditions of Theorem 4.1 are satisfied with (4.2) rein-
forced into

∃K > 0, ∃C2 ≥ 0 ∀v ∈ V, ‖g(v)‖Z′ ≤ C2 +K||v||α+1
Z . (5.6)

Then any τ -antiperiodic solution u ∈ C1(R, V ) ∩ C2(R, H) of (2.2) is such that

sup
t∈R

(|u̇(t)|2 + ‖u(t)‖2) ≤ C(1 + ||h||
α+2

α+1

L2([0,τ ],H))

where C is independent of h.
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Proof. The starting point is the same as for the proof of Theorem 4.1. From the inequality
∫ 2τ

0

〈g(u̇), u̇〉dt ≤ C3[1 +

∫ 2τ

0

|h|2dt]
α+2

2α+2 ] (5.7)

we deduce the estimate
∫ 2τ

0

|u̇|2dt ≤ C4[1 + {

∫ 2τ

0

|h|2dt}
1

α+1 ] (5.8)

but also
∫ 2τ

0

||u̇||α+1
Z dt ≤ C5[1 + {

∫ 2τ

0

|h|2dt}1/2] (5.9)

and by (5.6) this implies
∫ 2τ

0

||g(u̇)||Z′dt ≤ C6[1 + {

∫ 2τ

0

|h|2dt}1/2] (5.10)

From (5.9), since u has mean-value 0, we deduce

sup
t∈[0,2τ ]

‖u(t)‖Z ≤ C7(1 + ||h||
1

α+1

L2([0,2τ ],H)) (5.11)

The two last inequalities imply immediately

|

∫ 2τ

0

〈g(u̇), u〉dt| ≤ C8(1 + ||h||
α+2

α+1

L2([0,2τ ],H))

Now, multiplying the equation by u and integrating on the period we find easily after com-
bining with (5.8)

∫ 2τ

0

Φ(t)dt ≤ C9(1 + ||h||
α+2

α+1

L2([0,2τ ],H))

with Φ(t) = |u̇|2 + ‖u‖2 . Since

Φ′(t) = (h, u̇)− 〈g(u̇), u̇〉

by 2τ - periodicity and the inequality Φ′ ≤ |h||u̇|+ C1, we find as a consequence of (5.8)

Φ(t) ≤

∫ t

t−τ

Φ(s)ds+ C10(1 + ||h||
α+2

α+1

L2([0,2τ ],H))

and the conclusion follows easily by using τ− antiperiodicity.

Remark 5.4. This result is certainly not optimal but it is all we can prove for the moment
even in the most basic examples. Our result requires additional regularity on u, this is usually
achieved by assuming some regularity on h. When g is monotone, usually the anti-periodic
solution is unique and depends continuously on h in L2, so that the estimate will be easy to
transfer to the general case in the examples. This is important since we cannot derive strong
estimates on solutions which are not anti-periodic and therefore approximation by strong
solutions has to be performed within the anti-periodic class.
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