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Abstract 

The proposed numerical model for simulating two-dimensional cracking process in brittle 

materials is based on the coupled criterion (CC) which enters in the general framework of 

Finite Fracture Mechanics. It states that both the energy and stress conditions should be 

fulfilled to predict the crack creation in brittle solids. Special numerical approaches were 

developed in drawing correctly the potential crack paths and to minimize the potential energy 

with respect to all predicted crack paths. The originality of this work lies in the ability to 

describe both the initiation and the growth of one or more cracks. Moreover, statistical 

distributions of flaws can be accounted for. The efficiency and accuracy of the proposed 

approach were approved by means of several numerical examples for which the solutions are 

well-known or well-studied in the literature. 

Keywords: Crack initiation, crack growth, multiple cracking, finite element analysis, brittle 

or quasi-brittle materials. 

 

1. Introduction 

Numerical prediction of fracture in solids is a classical challenge for mechanics and 

computational sciences. Developing efficient and accurate numerical models to simulate 

fracture behavior has been extensively studied in the last two decades. Even though numerous 

theoretical and numerical studies exist in the literature in predicting the crack growth, few 

numerical models are available to predict both the crack initiation and crack growth.  



  

Among these models, the most popular and efficient one nowadays is the cohesive zone 

model (CZM) [1-2]. A wide range of phenomena have been analyzed using this framework. 

Numerical schemes, like the finite element method, have become the mainstay for solution 

involving CZM.  Crack propagation - crack nucleation can be modeled by the introduction of 

cohesive surfaces [3-4] allowing for shear as well as tensile debonding. One advantage of this 

type of formulation is that it no longer requires an initial crack, whose length and direction is 

difficult to prescribe, so that crack nucleation can easily be analyzed. Generally speaking, the 

cohesive elements can be inserted between all bulk elements such that the cohesive model can 

select automatically the crack paths. However, if the finite element mesh is refined and 

cohesive surfaces are continually added between all elements, convergence cannot always be 

expected. An additional result is logically the expensive computational costs. Practically, the 

cohesive elements are only inserted at predefined crack paths to avoid these numerical 

complications.  These points have been well documented in the literature [5-6]. 

 

Apart from the CZM, the so-called phase-field model provides another possibility to predict 

both the crack initiation and crack growth. Francfort and Marigo [7] developed a so-called 

damage gradient model in which the damage zone converges to a crack as a prescribed length 

parameter tends to zero. Efficient algorithms were developed in order to solve complicated 

cracking problems [8-9]. Recently, phase-field models have found a widespread popularity for 

simulating brittle crack initiation and propagation in a smeared manner. However, concerns 

have been raised as well. It has been shown that the load-displacement curves can depend 

considerably on the internal length scale l that defines the width of the distributed fracture 

zone and on the degradation function that has been introduced [10-11]. Once the parameters 

Gc, the critical energy release rate, and l are specified according to the material under 

consideration and the mesh density is given, there is no room left to specify the critical stress 

[12]   

  

In studying the crack onset from the root of a sharp V-notch, Leguillon [13] noticed that 

application of a single conventional fracture criterion, namely the Griffith energy criterion or 

the stress criterion, is not suitable and often leads to paradoxical predictions. It was concluded 

that when fracture occurs both criteria are fulfilled simultaneously, even if one often hides the 

other. Both are necessary conditions and together they form a sufficient one. Application of 

this coupled criterion (CC) to crack onset predictions at a V-notch root shows remarkably 

satisfactory agreement with respect to experimental results. Afterward, the CC gets increasing 

popularity in fracture prediction of brittle or quasi-brittle materials. A large number of 

fracture cases were studied by using this criterion [14-19 among others].  

If the accuracy and efficiency of this criterion were approved by means of numerous real 

structure analyses, these studies were often performed case by case by using particular 



  

resolution techniques such as asymptotic analysis, local finite element modelling etc. 

Therefore, we believe that it is necessary and useful to implement this criterion into a 

numerical code such that more complicated fracture problems can be dealt with. This is the 

main motivation of the present work. 

Herein, various numerical efforts were made for developing algorithms to predict 

automatically the location of crack nucleation and next their path. By means of these efforts, 

the CC was successfully implemented into a finite element code with which two-dimensional 

fractures in brittle materials can readily be simulated. Moreover, several classical fracture 

problems were studied in order to assess the efficiency of the proposed numerical model. The 

numerical results were compared with some well-known solutions in the literature to show 

that they are fully satisfactory.  

 

2. Description of the numerical fracture model 

 

2.1 The coupled criterion 

The coupled criterion (CC) was widely presented in the literature (see the review paper by 

Weissgraeber et al. [20]). Herein we just give a brief outline. The CC is based on the Finite 

Fracture Mechanics (FFM) in which the Griffith criterion is written in incremental form: 

inc

cG G
S






  

 (1) 

where   is the change in potential energy, S t l   is the newly created crack surface 

(within the 2D framework t is the thickness of the body under consideration and δl the crack 

increment length), incG  is the so-called incremental energy release rate and cG  is its critical 

value representing the fracture toughness of the material. This criterion is not sufficient since 

it depends on the newly created surface S  (up to now unknown). In order to remedy this 

shortcoming, the stress condition has to be added. For brittle materials, the maximal principal 

stress criterion is an appropriate candidate:   

1 c 
 (2) 

where 1  and c  are respectively the maximal principal stress and the ultimate stress of the 

material.  Within a plane elasticity framework, Leguillon [13] states that new crack is created 

if and only if both the stress and energy conditions are verified, i.e., the stress criterion is 

satisfied at all the points along the newly created crack path, i.e. over whole S , and the 

Griffith criterion is satisfied with the corresponding crack path. 

One of the main advantages of the CC is its ability to predict both the crack initiation and 

crack growth. In fact, through a matched asymptotic expansion analysis Leguillon [13] 

showed that the applied stress 
*

app  at crack initiation can be written as 
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where  (< 1) is the singularity exponent of the stress concentration (in case of a V-notch for 

instance), (0, G0) are scaling coefficients. It is clear that this formulation coincides with the 

Griffith criterion in the presence of a crack ( = 0.5) and with the strength criterion for a 

straight edge ( = 1). 

The CC is conceptually clear and physically convincing. Its application to different academic 

or engineering fracture problems has shown remarkable efficiency and accuracy. It is easy to 

apply when the fracture locations and the crack paths are previously known. However, these 

data are not always available for complex structures. Consequently, the first task in a 

numerical implementation of this criterion is to determine the locus of the crack creation.  To 

this end, some simple but physically reasonable hypotheses have been adopted. In the 

following, we present the numerical details in the implementation of this criterion into a FE 

code. The three-node linear triangle elements are used in the simulations. Several reasons 

prompt us to use such a simple element.  First, the adopted procedure of representing crack 

growth by element elimination requires very strong mesh refinements, thus it is convenient to 

use the simplest finite-element diminishing in this way high computational costs. Second, the 

usage of constant-stress finite-element allows a simple implementation of the procedure for 

crack path prediction proposed in Section 2.4. Finally, an increase of the degree of 

interpolation is useless in the vicinity of an elastic singularity because of the lack of 

smoothness of the solution. 

 

2.2 General computational consideration 

In the proposed numerical model, the external loads are applied in an incremental manner.  

According to the CC, one of the necessary conditions of fracture is that the stress criterion 

1 1c    must be fulfilled all along the supposed crack paths. Consequently, we should 

firstly find all the zones in which 1 1c   , each containing one and only one local 

maximum of 1 . We further assume that only one crack is created in each of such zones. If no 

such a zone is detected, the applied loads are incrementally increased. 

The cracks may potentially initiate from the point where the first principal stresses 1  is 

locally maximum and propagates along the direction perpendicular to the first principal 

direction. Among all these potential cracks, the real cracks will be the combination making 

the incremental energy release rate maximum. This hypothesis is a classical one in fracture 

mechanics [21] even though the stress criterion is not considered. Furthermore, in the 

framework of FFM, Mantic [22] formulated mathematically this hypothesis as a minimization 

problem. All these hypotheses allow building a robust computational algorithm for the 

assessment of both cracks initiation and further cracks growth.  

 



  

2.3 Locations of the potential newly created cracks. 

According to the above-mentioned general consideration, the first task is to find the zones in 

which 1 1c   , each containing a local maximum of 1  under a given prescribed load.  

To this end, we inverse the sign of 1 , such that a local maximum value become a local 

minimum value. Then we use the so-called watershed flooding technique to find these zones. 

The basic idea consists in considering the stress distribution as a topographic surface and 

placing a water source in each local minimum of its relief. Next the entire relief is gradually 

flooded from the sources and dams are placed where the different water sources meet. Figure 

1 shows the flooding process of a 1D surface according to which the algorithm was built [23]. 

 

 

 

(a) (b) 

 

 (c)          (d) 

Figure 1: Watershed flooding process (a): a water source is placed at the point where - 1 c    

is minimum, increasing the water level allows finding the neighboring elements and then 

creating the first catchment basin; (b) by increasing the water level, another distinguished 

local minimum is found from which the second catchment basin is created; (c) when the first 

and second catchment basins meet, a dam is placed; (d) continuing this process until 

1 1c    allows finding distinct catchment basins containing each a local minimum of 

1 c  . 

 

All elements in the zone around a given minimum constitute the catchment basin associated 

with that minimum. The watersheds are the zones dividing adjacent catchment basins. The 



  

first points that are reached by water are the elements at the highest stress value, i.e., points 

where 1 c   are minimal, and then all elements are progressively reached up to the stress 

level 1 1c   .  

The catchment basins are labeled with integer values. Each catchment basin contains a local 

maximum 1  from which a potential crack can be created.  

Normally, the classical watershed technique often lead to over-segmentation phenomenon, 

which consists in finding out too many catchment basins due to noisy numerical results. There 

exist numerous denoising techniques in the literature to reduce this over-segmentation [24]. In 

this work, we just pre-process the topographic surface by using the median filtering technique 

for its simplicity. The main idea of the median filter is to run through the stress distribution 

map element by element, replacing the 1  value of the element with the median value of 

neighboring elements. In the case when the stress evaluation is sufficiently accurate, this 

simple technique is sufficient to reduce efficiently the over-segmentation phenomenon. 

This algorithm allows extracting N zones nS , each of them containing a local maximum of the 

first principal stress like a “hill peak”.  

 

2.4 Drawing the potential crack paths 

In each zone nS  a potential crack can be created. According to the maximal principal 

stress criterion, the direction of the newly created crack is perpendicular to the first principal 

stress. This criterion permits to draw a principal stress trajectory from each “hill peak”. The 

following algorithm is used to determine the crack paths: 

1. From the point  0 0,x y corresponding to the “hill peak” in nS , we draw first the right 

branch of the predicted crack path. To this end, we calculate the coordinates

1 0 0 1 0 0cos , sinx x l y y l     , where 0  is the angle of the first principal 

stress trajectory at the point  0 0,x y . Varying l  if necessary such that the point 

 1 1,x y  is located in an adjacent element; 

2. If the point  1 1,x y  is not located in nS , go to step 5. Else from the point  1 1,x y  and 

with the angle of the first principal stress trajectory 1 at this point, calculate   

2 1 1 2 1 1cos , sinright rightx x l y y l      and 

2 1 1 2 1 1cos , sinleft leftx x l y y l      

Varying l  if necessary such that the points  2 2,right rightx y and  2 2,left leftx y  are 

located in the adjacent elements; 

3. Let 2 2 2 2,right rightx x y y  if 1 2 2( , )right rightx y > 1 2 2( , )left leftx y , else let 2 2 2 2,left leftx x y y  ;  

4. Let 1 2 1 2,x x y y  and go to step 2 until  2 2,x y  is no longer located in nS . 

5. From the point  0 0,x y , draw the left branch of the predicted crack path by following 

the same algorithm as above-described. 



  

For each zone nS , a potential crack path is drawn. Simultaneously, the length of the crack 

path can be obtained by cumulating l . 

 

2.5 Creation of cracks by using the maximum energy release rate criterion  

It is clear that even all the predicted crack paths can be drawn by using the above-described 

algorithm, they will probably not all be activated to become real cracks. Which ones of them 

become real cracks depend on the fulfillment of the energy criterion inc

cS G G     .  

All the combinations of the possible crack extensions should be considered in order to find the 

maximal energy release rate. If we have predicted N potential crack paths and each path may 

become real crack or not, 2N
 combinations are possible to become real cracks. Consequently, 

2N
 linear elastic finite element resolutions have to be performed: one for the structure before 

crack extension, and 2 1N   for the structure with all the possible crack extension 

combinations. The combination which makes G
inc

 maximum and verifies the Griffith criterion 
inc

cG G  will become real cracks.  

For the creation of the new cracks, different approaches exist in the framework of the finite 

element method. We believe that the algorithm proposed above allows using the following 

techniques: 

1. Remove the elements along the predicted crack paths [25]; 

2. Remesh the elements near the predicted crack path by creating a new crack [26]; 

3. Introduce discontinuities along the predicted crack paths [27]. 

It is clear that amongst all these methods the first one is the simplest. For this reason it was 

used in the present work. In practice, we find all elements in interception with the predicted 

crack paths, and then remove them from the finite element model. In return, this obviously 

requires a sufficiently fine mesh to be as close as possible to the concept of crack. 

2.6 Overall algorithm 

In order to avoid complicated snap-back analyses and to guarantee the existence of the 

solutions, the external loads are applied incrementally by imposing displacements on the 

boundaries of the considered structure until a prefixed level. By using the techniques 

described above, we can construct an overall algorithm as follows: 

1. At each loading step, a first finite element calculation is carried out to determine the 

stress distribution and the total potential energy 0  in the structure; 

2. With the obtained stress distribution and by using the watershed flooding process, we 

first find N zones nS in which 1 c   and containing each a local maximum of 1 ; 

3. If N = 0, increase the external loads and go to step 1.  

4. Else, in each such zone nS , a potential crack path is drawn by following a principal 

stress trajectory; 



  

5. By activating or not each potential crack path, perform 2 1N   finite element 

calculations for all possible combinations and find the corresponding total potential 

energies i  and the crack length increment il . For each combination, we calculate 

the incremental energy release rate 0inc i
i

i

G
l

 
 


; 

6. Consider the crack path having the maximal incremental energy release rate inc

iG . If 

the energy criterion  max( )inc

i cG G  is fulfilled, create the corresponding new cracks 

by eliminating all elements along the predicted crack paths. Go to step 1; 

7. Go to step 1 without increasing the external loads.  

3. Validation and numerical examples 

In order to validate the proposed numerical fracture model, we carry out numerical 

simulations on some special structures for which the fracture modes are well-known or well-

studied in the literature. Through these examples, the efficiency and the accuracy of the model, 

especially the mesh independency and the capacity in modelling the multiple cracking 

processes, are also discussed.  

 

 (1): Crack initiation from a hole in a plate  

An earlier experimental work [28] showed that the strength of a drilled plate depends closely 

on the hole size. It was shown that this size effect can be captured by using the coupled 

criterion. In this work, we will evaluate the remote loads at fracture of the specimens by using 

the present numerical tool and compare them with the theoretical predictions, obtained by 

creating an ideal crack from the hole boundary and calculating its exact stress intensity factor 

according to the CC. Since the material used in the experiments, the polymethyl metacrylate 

(PMMA), is a very brittle material, the crack initiation leads to immediate structure failure of 

the specimens. Therefore, the remote load at the crack onset is considered as the strength of 

the drilled plate. 

The mechanical characteristics of the material are as follows: Young’s modulus E = 3000 

MPa, Poisson’s ratio  = 0.36; the ultimate tensile stress c = 72 MPa; the critical energy 

release rate Gc = 290 J/m
2
. The section of the specimens is of 10×30 mm

2
. The strengths of 

the plate with holes of different sizes are evaluated by using the present numerical method. In 

order to evaluate the influence of the mesh size on the crack onset prediction, three different 

element sizes near the hole are used in the simulations, namely d = 0.005, 0.01 and 0.02mm, 

where d is the average edge length of the triangular elements. It is useful to note that the 

characteristic length of the material is given by  
2

2c cK   =0.026mm.  

The numerical predictions of the strength for different hole sizes are plotted in Figure 2. The 

ordinate axis represents c  , the ratio of the remote tensile stress at fracture over the 

ultimate tensile stress. For comparison, the theoretical predictions obtained by using the CC 

[13, 28] are also plotted. From this figure, we can remark that the numerical strength 



  

predictions agree very well with the theoretical ones for fine meshes, i.e., for d = 0.005 and  

0.01mm. For the coarser mesh d = 0.02mm, the agreement is still good when the hole 

diameter is larger than 1mm. The numerical predictions become slightly more conservative 

than the theoretical ones when the hole diameter is smaller than 1mm. As expected,  tends 

to c as the hole size tends to zero, it tends to 3c  as the hole is large. 

The main difference between the theoretical and numerical approaches remains in the fact that 

the creation of ideal cracks in the theoretical approach is replaced by the removed elements in 

the numerical one. The decrease of the total potential energy is more important in the case 

when deleting elements, which leads to an over-estimation of the incremental energy release 

rate. Consequently, the prediction of the crack onset from a non-cracked structure is more 

conservative by using the element elimination technique. This error can be reduced by using 

refined mesh. From Figure 2, we can remark that the mesh sizes d = 0.005 and 0.01mm give 

very satisfactory crack onset predictions comparing to the theoretical predictions. We can also 

observe that when the mesh is sufficiently refined, the crack onset prediction is very weakly 

mesh-dependent. It is also worthy to note that the element elimination technique is much 

simpler to implement in a numerical code than the creation of real cracks, especially for 

multi-cracking problems.  

 

 
 

Figure 2: Critical remote stress at fracture of the drilled specimens as function of the hole size. 

Comparison between the theoretical and numerical predictions 

 

Figure 3 shows the first steps of the crack initiation and growth from the hole boundary. The 

elements in which the stress condition 1 c   is fulfilled are drawn in green. The predicted 
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crack path is plotted in black line. The elements drawn in red are at the intersection with the 

predicted crack path and have to be deleted. The black band represents the already removed 

elements. The crack onset is predicted according to the CC, i.e., both the stress and energy 

criteria are fulfilled, that explains the quite lengthy crack initiation (about 0.07mm, Fig. 3a). 

After the initiation, the crack grows rapidly under fixed remote displacement loading and it 

follows unstable crack propagation (Fig. 3b-3c) as observed in the experiments [28].   

 

 

(a)                                        (b)                                                   (c) 

Figure 3: Numerical simulation of the crack initiation and growth (a): crack onset from the 

hole boundary (b)-(c): crack growth under unchanged remote displacement load 

 

(2): Crack initiation from the tip of a V-notch 

Leguillon [13] performed a detailed study on crack onset from the tip of a sharp V-notch, on 

the basis of which the CC was proposed.  By using the CC, the remote loads at fracture, the 

crack direction and the crack onset length were successfully predicted. In fact, the asymptotic 

stress along the crack path can be written as 

   1

0 0,r kr s     (4) 

where 0  is the crack orientation with respect to the V-notch bisector; r is the distance 

between the V-notch tip and a point at the crack path. The singularity exponent is such that 

1/2 1 and k is the generalized stress intensity factor.  The potential energy change at a 

crack onset is written: 

2 2

0( )k K l t     (5) 



  

where t is the thickness of the specimen; l is the crack onset length and K  is a scaling term 

depending on the opening angle and the crack direction. The use of the CC (i.e. (4) for 0 r  

l and (5)) leads to the crack onset criterion in terms of the generalized stress intensity factor: 
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In [13], the coefficients k and K were evaluated by means of the matched asymptotic 

procedure. The crack direction 0  maximizes the denominator in the right hand side of (6). 

Hereafter we evaluate the remote loads at crack onset of a V-notched specimen and compare 

the results with Leguillon’s predictions. The geometry and the loading condition of the 

specimen are illustrated in Figure 4. The thickness of the specimen is e = 5mm. 

Displacements are prescribed at its top and bottom ends. The material parameters are as 

follows: Young’s modulus E = 3000 MPa, Poisson’s ratio  = 0.36; the ultimate tensile stress 

c = 72 MPa; the critical energy release rate Gc = 290 J/m
2
. The V-notch opening angle is 2 

= 90°. Fine mesh is used around the V-notch tips with the element size d = 0.005mm. Three 

loading cases, the pure tension, the pure shear and a mixed mode, are studied (Table 1). Eqn. 

(6) can be used in the two first cases, considering either the first (symmetric) or second 

(antisymmetric) mode of the Williams expansion associated with two different exponents   

(Table 1). In the more entangled mixed mode, an extension of (6) must be used, taking into 

account together the two above mentioned modes. See [29,30] for the generalization of (6) to 

complex loadings. 

The remote prescribed displacements u1 or u2 are incrementally increased until the CC is 

fulfilled. The critical remote resulting forces F1 for shear and F2 for tension obtained in this 

way are compared with the results using Leguillon’s method, as shown in the following table: 

 

Table 1: Critical remote loads at crack initiation of V-notched specimens 

Prescribed  

displacements 
u1 = 0 and u2  0 

pure tension 

u1  0 and u2 = 0 

pure shear 

u1/u2 = 10 

mixed mode 

Leguillon’s method λ = 0.545 

θ0 = 0 deg.  

F1= 0 

F2 = 2048 N 

λ = 0.906 

θ0 = 57 deg. 

F1= 10819 N 

F2 = 0 

λ1 = 0.545, λ2 = 0.906 

0  35 deg. 

F1= 4731 N 

F2 = 1752 N 

Present numerical 

method 

θ0 = 0 deg. 

F1= 0 

F2 = 2082 N 

θ0 = 54 deg. 

F1= 10931 N 

F2 = 0 

θ0 = 31 deg. 

F1= 4611 N 

F2 = 1746 N 

 

This comparison shows that the numerical predictions agree very well with the matched 

asymptotic procedure proposed in [13]. The differences on the critical remote loads are 

limited within 2%. The agreement between the crack directions may seem less accurate but it 



  

must be pointed out that it is difficult to measure in the numerical simulation, where the crack 

has a somewhat saw-tooth appearance caused by the removed elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Geometry and load conditions of the V-notched specimen 

 

(3): Crack initiation and growth  

The third example in the validation of the present model is a plate including a central crack 

subjected to a pure mode-I remote loading. We will show that in this case, the CC is 

equivalent to the Griffith criterion if the pre-existing crack is long enough.  

Consider a 2D square plate with a central crack of length 2a. The dimension of the specimen 

is 2W2W = 10 10 mm
2
. We evaluate the critical remote loads for crack growth with a 

central crack of different sizes, namely a/W = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4 and 

0.5, here a = 0 means that there is no crack in the plate. The mechanical properties of the 

material are: Young’s modulus E = 3000 MPa, Poisson’s ratio  = 0.3, ultimate stress c = 

150 MPa, critical stress intensity factor 67MPa mmcK  . By considering the symmetry, 

only one half of the plate is modeled. In order to investigate the influence of the mesh size, 

different element sizes near the crack tip are used in the simulations, namely d = 0.003, 0.006 

and 0.01mm, where d is the average edge length of the triangular elements. A uniaxial tension 

along the direction normal to the crack was applied at the ends of the plate by imposing 

incrementally increasing displacements. The remote load is applied gradually until the CC is 

verified. Figure 5 shows the fracture details near the crack tip.  
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Figure 5: Growth simulation of a central crack. The black band represents the removed 

elements after the first step of the crack growth.   

 

 

 

Figure 6: Normalized stress intensity factor KI/KIc and normalized remote stresses c 
 as a 

function of the normalized semi-crack length a/W for mode-I loaded cracks at fracture. 

 

The critical remote load at crack propagation thus obtained was used to calculate the stress 

intensity factor by using a formula found from a handbook of stress intensity factors [31]. By 

comparing the obtained stress intensity factors to the critical value cK , we can evaluate the 

accuracy of the method for crack growth prediction. The results of these calculations are 
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shown in Figure 6. From this figure, we can observe that for sufficiently long cracks (a/W > 

0.05), the normalized stress intensity factor 1cK K  . Therefore, the stress intensity factors at 

fracture evaluated by using the CC equal correctly the material fracture toughness. For very 

short cracks, the Griffith fracture criterion is no longer sufficient to predict the crack growth. 

The critical stress intensity factor decreases as the crack length decreases. Moreover, the 

remote stress at fracture tends to the material tensile strength as the crack length tends to zero. 

In this case, the CC degenerates to the maximum principal stress criterion for nonsingular 

stresses.  

We can observe that the crack growth prediction is very weakly mesh-sensitive when 

sufficiently refined meshes are used. Apart from the results calculated with d = 0.01mm that 

represents quite a coarse mesh, the calculations with finer meshes, e.g. d = 0.003mm and 

0.006mm, provide us with very close values for remote loads at fracture. In fact, the predicted 

crack path should contain sufficient number of elements in order to guarantee a good accuracy 

on the stress and energy calculations. For crack growth, the length of predicted crack path can 

be calculated by  
2

2 0.032c cl K    mm for the used material with the parameters 

above-mentioned. From Figure 6, we remark that the element size d =l/5 offers already 

sufficient accuracy for the crack growth prediction. The complete mesh-independency can be 

expected by using very refined meshes, which will increase drastically the computational 

costs.  

 

(4): Crack path tracking: interaction of two cracks 

The present method enables efficient crack path tracking when the stress field is accurately 

evaluated. We illustrate this feature by the following example.  Consider a rectangular plate 

with two non-symmetric cracks at its side edges subjected to tensile loading (Figure 7). We 

calculate the critical remote load at fracture and the crack paths by using the proposed method 

and then compare them with the results found in the literature.  Recently, Judt and Ricoeur 

[32] studied this problem by using a variant of the J-integral technique [33]. The geometry of 

the specimen is shown in Figure 7. The material parameters are chosen as follows: Young’s 

modulus E = 72 000 MPa, Poisson’s ratio  = 0.33, ultimate stress 300MPac  and material 

fracture toughness Kc = 23.9 MPa m .  

It is clear that the initial geometrical symmetry of the crack positions is unstable. From 

experimental or numerical point of view, a small perturbation can break this symmetry such 

that one of the cracks can first grow while the other remains arrested. In order to keep 

approximately the geometrical symmetry during the crack propagation, we enforce the 

simultaneous growth of the two cracks, even though the minimum potential principle may be 

slightly violated.   

In order to assess the mesh-sensitivity of the method, we performed simulations with 3 

element sizes, namely d = 0.075mm, 0.1mm and 0.15mm. In Figure 7, we show the crack 

paths obtained with the different meshes. For comparison, the crack paths obtained in [32] are 



  

also plotted in this figure. We can see that the three meshes provide almost the same crack 

paths which agree very well with the result presented in [32]. Here again, the mesh-sensitivity 

is shown very weak with the adopted meshes and the accuracy of the proposed model is 

satisfactory in predicting the crack paths. 

 

 

Figure 7: Crack paths predicted by using different meshes in a plate with double cracks 

 

(5): Multi-cracking: Cracking in fiber-reinforced epoxy cross-ply laminates 

Multiple crack initiations and growths can occur simultaneously. Simulation of multiple 

cracking processes is a big challenge for computational mechanics. The proposed numerical 

model is able to deal with this problem in a rigorous manner. In fact, all the possible new 

crack loci are examined by applying the CC and the best combination of them that makes the 

total potential energy minimal is selected as the next cracks extensions.  

In the following, we consider the experimental works performed by Parvizi et al. [34] on the 

transverse fracture of glass fiber-reinforced cross-ply laminates. The numerical simulations of 

their experiments can be used to validate Leguillon’s criterion and also, to show the ability of 

the proposed method in modelling the multi-cracking process.  

Parvizi et al. [34] carried out tensile tests on a cross-ply glass fiber-reinforced composite 

made of two outer layers oriented at 0◦ (fibers are parallel to the tension direction) and an 

inner one oriented at 90◦, as shown in Figure 8. The thickness of the inner ply was varied and 

the applied strain at the first occurrence of a transverse crack was recorded. As the applied 

load increases, multiple cracks were observed in the inner ply. 

 



  
 

Figure 8: Scheme of the tensile tests on a cross-ply glass fiber-reinforced composite Include the  

 

The samples were modeled by using bi-dimensional plane-strain triangle elements. Only one 

half of the sample was meshed by symmetry. The plies were regarded as orthotropic materials 

with the following Hooke’s law: 
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According to the data given in [32], the mechanical properties of the outer ply are: Ex = 14000 

MPa; Ey = 42000 MPa; x = 0.13; y = 0.4;  xy = 10000 MPa , and for the inner ply : Ex = Ey = 

14000 MPa; x= y = 0.13; xy =6194 MPa . The outer ply was considered as unbreakable. 

For the inner ply, according to [34], we took c = 84MPa and Gc = 0.12 MPa mm. The length 

of the samples is taken to be sufficiently long (L = 10mm) such that the appearance of the first 

crack is not influenced by the length of the samples. The thickness of the outer ply is 0.5 mm. 

Several thicknesses of the inner ply were considered in the simulation, namely 2e = 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 1, 4mm respectively. The specimens were subjected to uniaxial tension in 

the vertical direction by imposing incrementally increasing displacements on the outer layers 

of the composite. 

      We first illustrate how the proposed method initiates the first crack in the inner ply. Figure 

9–a shows the distribution of the first principal stresses in the inner ply just before the onset of 

the first crack. In Figure 9–b, we plot the first principal stresses of the inner ply along the 

interface. From these two figures, we can find that the stress concentrations are of a very high 

level at the two ends of the specimen near the interface. At the center of the specimen, it 

appears a very large zone in which the first principal stress exceeds the material strength with 

a nearly uniform distribution. The proposed algorithm should choose the location of the first 



  

crack initiation according to the CC. In fact, three zones including a local stress maximum 

were first found by applying the watershed line method, as shown in Figure 9–c. Then the 

potential crack paths were created from the local stress maxima by following the direction 

normal to the first principal stress. As shown in Figure 9–d, although the stress concentration 

is much higher at extremities than in the central part of the specimen, the potential crack paths 

are much shorter. Consequently, these potential cracks have small impact on the total 

potential energy so that the energy criterion is not fulfilled. On the contrary, the potential 

crack at the central part of the specimen is much longer. Its activation provokes a much larger 

variation of the total potential energy. Consequently, both the stress and energy criteria are 

fulfilled to create first a new crack at the central part of the specimen. This is what was 

observed in the experiments [34].                     

 

 

(a)          (b)         (c)             (d) 

Figure 9: Stress distribution and the potential crack paths. (a) Distribution of 1 / c  ; (b) 

Variation of 1 / c   along the interface; (c) Three zones found in which there is a local 

maximum of 1 / c   ≥ 1; (d) Potential crack paths 

 

 By following this method, we simulated the experiments for specimens of different 

thicknesses of the inner layer. The imposed longitudinal strains at first crack initiation were 

obtained, then compared with the experimental data of Parvizi et al., as shown in Figure 10.  

We can remark a very satisfactory agreement between the numerical and experimental results. 



  

In fact, for specimens with a thin inner ply, the energy criterion governs the failure while the 

stress criterion is trivially fulfilled. The contrary occurs for specimens with a thick inner ply. 

   

 
 

Figure 10: Nominal strain at the occurrence of the first transverse crack versus the thickness 

of the inner ply 

 

It is clear that one of the interesting features of the proposed method is its ability to simulate 

the multi-cracking process in composite materials for instance. The further crack creation 

process in the laminate was simulated for different thicknesses of the inner ply. In Figure 11, 

we plot the density of the transverse cracks in the inner ply as a function of the prescribed 

strain. As expected, specimens with a thin inner ply sustain higher loads for the first crack 

formation. However, the crack density increases rapidly  as the load increases. For specimens 

with a thick inner ply, the first crack formation requires smaller remote loads. As the stress 

relaxation is larger when creating a longer crack, the further crack formation requires higher 

remote loads. This trend was also observed in some experimental works [35] on thin coatings. 

   

 



  

 

Figure 11: Crack density as function of Nominal strain for different thickness of the inner ply 

 

(6): Cracking in composite materials 

In this section, we attempt to assess the multi-cracking process in composite materials. In this 

case, the strengths and the fracture toughness are function of the spatial coordinates. In this 

case, the watershed technique permits to create automatically distinct potential cracks in 

adjacent materials of the composite. According to the CC, we have to ensure that S    is 

maximal for the crack combination. However, a global energy criterion     cS G does 

not exist for creating several cracks simultaneously as the values of cG may be different for 

each crack. In order to overcome this difficulty, we assume furthermore that the energy 

criterion 
( ) ( ) ( )i i i

cS G     is fulfilled for all the individual cracks of the combination, 

where
( )i , 

( )iS , 
( )i

cG  are respectively potential energy change, the newly created crack 

surface and the critical energy release rate when only the crack (i) is activated in a single 

material component of the composite.  

 

To illustrate this feature, we consider again the fiber-reinforced laminate formerly treated in 

example (5) by taking some scattering into account. In the following simulations, we assume 

that the strength and the fracture toughness are randomly distributed in the inner ply of the 
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composite following a Weibull distribution. The two parameters Weibull’s law used in this 

work writes: 

 
1

m

cm

c
c

m
f e






 

  
 
  

  
   (8) 

where  cf   stands for the failure probability at 1 c  , m and  are the Weibull 

parameters, with m = 9 and  = 89 MPa. Following this probability function, the material 

strength is randomly distributed in the inner ply by spots of 0.5 mm × e. The fracture 

toughness of each spot is related to the strength by  
2

0.132c cG   MPa.mm. These 

strength and fracture toughness distributions will generate approximately a mean strength of 

84 MPa and a mean fracture toughness of 0.12 MPa.mm as those in example (5). One of the 

strength distributions and the frequency histogram are shown in Figure 12.  

 

(a)         (b) 

Figure 12: (a) Strength distribution in the inner ply according to the Weibull model (b) 

Histogram of strength 

By means of this probabilistic approach, the previous numerical simulations were revisited. 

The numerical results are plotted in Figure 13. Comparing to Figure 11, the curves of crack-

density vs. nominal strain show more graduate variation with a gentle slope. These results 

exhibit a better similarity to those obtained in experiments [35]. 



  

Figure 14 shows the crack patterns in the inner ply obtained by using the deterministic and 

probabilistic approaches respectively. Noting that the crack pattern of the deterministic model 

is very regular; the cracks appear by following nearly a dichotomy rule, while the 

probabilistic model provides a more irregular crack pattern. We can also note that small 

cracks emerge when the crack density reaches a critical level for both the deterministic and 

probabilistic models. In real composite materials, the interface debonding is often observed 

instead of the small transverse cracks. As the interface debonding is not taken into account in 

the present work, the small transverse cracks appear in the numerical simulations.    

This example shows numerous capacities of the proposed method in simulating multi-

cracking process in heterogeneous materials. As our attention is focused on the methodology 

description, detailed comparison with experimental works has not been realized.    

     

 

Figure 13 Crack density as function of Nominal strain for different thickness of the inner ply 

according to the Weibull model 
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(a)        (b) 

Figure 14: Crack patterns in the inner ply obtained by using the deterministic (a) and 

probabilistic (b) approaches respectively at nominal strain ε = 0.0115 

 

4. Conclusions 

In this work, we have implemented the fracture criterion proposed by Leguillon [13] into a 

finite element code for simulating two-dimensional cracking process in brittle materials. By 

means of a large number of examples for which the solutions are well-known or well-studied 

in the literature, the validity of the proposed numerical model was confirmed. It was shown 

that this numerical model presents several advantages, for example:   

- Both crack initiation and crack growth can be predicted; 

- Multi-cracking problems can easily be considered; 

- Cracking process in heterogeneous materials can be simulated; 

- Once the finite element model provides sufficient accuracy on stress evaluation, the fracture 

prediction is nearly mesh-insensitive.  

- Convergence can always be guaranteed if displacement boundary conditions are prescribed.   

- Only linear elastic calculations are required. This allows building a robust and efficient 

computational algorithm. 

It is clear that further researches are necessary to improve the numerical model. One of the 

tasks is to build smooth stress fields in order to avoid the over-segmentation problem that 

leads to too many potential cracks. In this topic, the denoising techniques developed in image 

processing science [24] should be more thoroughly investigated. Another drawback of the 

model may be its huge computational costs required for a large number of cracks. Even 

though parallel computing techniques can largely increase the calculation speed, 



  

supplementary hypotheses and more efficient algorithms are expected to reduce the 

computational tasks.   

The couple criterion for fracture prediction is conceptually simple and physically reasonable. 

Its numerical implementation opens a new way to describe the cracking process in solids. We 

believe that many other complex problems in fracture evaluations can be treated by 

developing more operational numerical tools. 
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Abstract 

The proposed numerical model for simulating two-dimensional cracking process in brittle 

materials is based on the coupled criterion (CC) which enters in the general framework of 

Finite Fracture Mechanics. It states that both the energy and stress conditions should be 

fulfilled to predict the crack creation in brittle solids. Special numerical approaches were 

developed in drawing correctly the potential crack paths and to minimize the potential energy 

with respect to all predicted crack paths. The originality of this work lies in the ability to 

describe both the initiation and the growth of one or more cracks. Moreover, statistical 

distributions of flaws can be accounted for. The efficiency and accuracy of the proposed 

approach were approved by means of several numerical examples for which the solutions are 

well-known or well-studied in the literature. 

Keywords: Crack initiation, crack growth, multiple cracking, finite element analysis, brittle 

or quasi-brittle materials. 

 

1. Introduction 

Numerical prediction of fracture in solids is a classical challenge for mechanics and 

computational sciences. Developing efficient and accurate numerical models to simulate 

fracture behavior has been extensively studied in the last two decades. Even though numerous 

theoretical and numerical studies exist in the literature in predicting the crack growth, few 

numerical models are available to predict both the crack initiation and crack growth.  



  

Among these models, the most popular and efficient one nowadays is the cohesive zone 

model (CZM) [1-2]. A wide range of phenomena have been analyzed using this framework. 

Numerical schemes, like the finite element method, have become the mainstay for solution 

involving CZM.  Crack propagation - crack nucleation can be modeled by the introduction of 

cohesive surfaces [3-4] allowing for shear as well as tensile debonding. One advantage of this 

type of formulation is that it no longer requires an initial crack, whose length and direction is 

difficult to prescribe, so that crack nucleation can easily be analyzed. Generally speaking, the 

cohesive elements can be inserted between all bulk elements such that the cohesive model can 

select automatically the crack paths. However, if the finite element mesh is refined and 

cohesive surfaces are continually added between all elements, convergence cannot always be 

expected. An additional result is logically the expensive computational costs. Practically, the 

cohesive elements are only inserted at predefined crack paths to avoid these numerical 

complications.  These points have been well documented in the literature [5-6]. 

 

Apart from the CZM, the so-called phase-field model provides another possibility to predict 

both the crack initiation and crack growth. Francfort and Marigo [7] developed a so-called 

damage gradient model in which the damage zone converges to a crack as a prescribed length 

parameter tends to zero. Efficient algorithms were developed in order to solve complicated 

cracking problems [8-9]. Recently, phase-field models have found a widespread popularity for 

simulating brittle crack initiation and propagation in a smeared manner. However, concerns 

have been raised as well. It has been shown that the load-displacement curves can depend 

considerably on the internal length scale l that defines the width of the distributed fracture 

zone and on the degradation function that has been introduced [10-11]. Once the parameters 

Gc, the critical energy release rate, and l are specified according to the material under 

consideration and the mesh density is given, there is no room left to specify the critical stress 

[12]   

  

In studying the crack onset from the root of a sharp V-notch, Leguillon [13] noticed that 

application of a single conventional fracture criterion, namely the Griffith energy criterion or 

the stress criterion, is not suitable and often leads to paradoxical predictions. It was concluded 

that when fracture occurs both criteria are fulfilled simultaneously, even if one often hides the 

other. Both are necessary conditions and together they form a sufficient one. Application of 

this coupled criterion (CC) to crack onset predictions at a V-notch root shows remarkably 

satisfactory agreement with respect to experimental results. Afterward, the CC gets increasing 

popularity in fracture prediction of brittle or quasi-brittle materials. A large number of 

fracture cases were studied by using this criterion [14-19 among others].  

If the accuracy and efficiency of this criterion were approved by means of numerous real 

structure analyses, these studies were often performed case by case by using particular 



  

resolution techniques such as asymptotic analysis, local finite element modelling etc. 

Therefore, we believe that it is necessary and useful to implement this criterion into a 

numerical code such that more complicated fracture problems can be dealt with. This is the 

main motivation of the present work. 

Herein, various numerical efforts were made for developing algorithms to predict 

automatically the location of crack nucleation and next their path. By means of these efforts, 

the CC was successfully implemented into a finite element code with which two-dimensional 

fractures in brittle materials can readily be simulated. Moreover, several classical fracture 

problems were studied in order to assess the efficiency of the proposed numerical model. The 

numerical results were compared with some well-known solutions in the literature to show 

that they are fully satisfactory.  

 

2. Description of the numerical fracture model 

 

2.1 The coupled criterion 

The coupled criterion (CC) was widely presented in the literature (see the review paper by 

Weissgraeber et al. [20]). Herein we just give a brief outline. The CC is based on the Finite 

Fracture Mechanics (FFM) in which the Griffith criterion is written in incremental form: 

inc

cG G
S






  

 (1) 

where   is the change in potential energy, S t l   is the newly created crack surface 

(within the 2D framework t is the thickness of the body under consideration and δl the crack 

increment length), incG  is the so-called incremental energy release rate and cG  is its critical 

value representing the fracture toughness of the material. This criterion is not sufficient since 

it depends on the newly created surface S  (up to now unknown). In order to remedy this 

shortcoming, the stress condition has to be added. For brittle materials, the maximal principal 

stress criterion is an appropriate candidate:   

1 c 
 (2) 

where 1  and c  are respectively the maximal principal stress and the ultimate stress of the 

material.  Within a plane elasticity framework, Leguillon [13] states that new crack is created 

if and only if both the stress and energy conditions are verified, i.e., the stress criterion is 

satisfied at all the points along the newly created crack path, i.e. over whole S , and the 

Griffith criterion is satisfied with the corresponding crack path. 

One of the main advantages of the CC is its ability to predict both the crack initiation and 

crack growth. In fact, through a matched asymptotic expansion analysis Leguillon [13] 

showed that the applied stress 
*

app  at crack initiation can be written as 
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where  (< 1) is the singularity exponent of the stress concentration (in case of a V-notch for 

instance), (0, G0) are scaling coefficients. It is clear that this formulation coincides with the 

Griffith criterion in the presence of a crack ( = 0.5) and with the strength criterion for a 

straight edge ( = 1). 

The CC is conceptually clear and physically convincing. Its application to different academic 

or engineering fracture problems has shown remarkable efficiency and accuracy. It is easy to 

apply when the fracture locations and the crack paths are previously known. However, these 

data are not always available for complex structures. Consequently, the first task in a 

numerical implementation of this criterion is to determine the locus of the crack creation.  To 

this end, some simple but physically reasonable hypotheses have been adopted. In the 

following, we present the numerical details in the implementation of this criterion into a FE 

code. The three-node linear triangle elements are used in the simulations. Several reasons 

prompt us to use such a simple element.  First, the adopted procedure of representing crack 

growth by element elimination requires very strong mesh refinements, thus it is convenient to 

use the simplest finite-element diminishing in this way high computational costs. Second, the 

usage of constant-stress finite-element allows a simple implementation of the procedure for 

crack path prediction proposed in Section 2.4. Finally, an increase of the degree of 

interpolation is useless in the vicinity of an elastic singularity because of the lack of 

smoothness of the solution. 

 

2.2 General computational consideration 

In the proposed numerical model, the external loads are applied in an incremental manner.  

According to the CC, one of the necessary conditions of fracture is that the stress criterion 

1 1c    must be fulfilled all along the supposed crack paths. Consequently, we should 

firstly find all the zones in which 1 1c   , each containing one and only one local 

maximum of 1 . We further assume that only one crack is created in each of such zones. If no 

such a zone is detected, the applied loads are incrementally increased. 

The cracks may potentially initiate from the point where the first principal stresses 1  is 

locally maximum and propagates along the direction perpendicular to the first principal 

direction. Among all these potential cracks, the real cracks will be the combination making 

the incremental energy release rate maximum. This hypothesis is a classical one in fracture 

mechanics [21] even though the stress criterion is not considered. Furthermore, in the 

framework of FFM, Mantic [22] formulated mathematically this hypothesis as a minimization 

problem. All these hypotheses allow building a robust computational algorithm for the 

assessment of both cracks initiation and further cracks growth.  

 



  

2.3 Locations of the potential newly created cracks. 

According to the above-mentioned general consideration, the first task is to find the zones in 

which 1 1c   , each containing a local maximum of 1  under a given prescribed load.  

To this end, we inverse the sign of 1 , such that a local maximum value become a local 

minimum value. Then we use the so-called watershed flooding technique to find these zones. 

The basic idea consists in considering the stress distribution as a topographic surface and 

placing a water source in each local minimum of its relief. Next the entire relief is gradually 

flooded from the sources and dams are placed where the different water sources meet. Figure 

1 shows the flooding process of a 1D surface according to which the algorithm was built [23]. 

 

 

 

(b) (b) 

 

 (c)          (d) 

Figure 1: Watershed flooding process (a): a water source is placed at the point where - 1 c    

is minimum, increasing the water level allows finding the neighboring elements and then 

creating the first catchment basin; (b) by increasing the water level, another distinguished 

local minimum is found from which the second catchment basin is created; (c) when the first 

and second catchment basins meet, a dam is placed; (d) continuing this process until 

1 1c    allows finding distinct catchment basins containing each a local minimum of 

1 c  . 

 

All elements in the zone around a given minimum constitute the catchment basin associated 

with that minimum. The watersheds are the zones dividing adjacent catchment basins. The 



  

first points that are reached by water are the elements at the highest stress value, i.e., points 

where 1 c   are minimal, and then all elements are progressively reached up to the stress 

level 1 1c   .  

The catchment basins are labeled with integer values. Each catchment basin contains a local 

maximum 1  from which a potential crack can be created.  

Normally, the classical watershed technique often lead to over-segmentation phenomenon, 

which consists in finding out too many catchment basins due to noisy numerical results. There 

exist numerous denoising techniques in the literature to reduce this over-segmentation [24]. In 

this work, we just pre-process the topographic surface by using the median filtering technique 

for its simplicity. The main idea of the median filter is to run through the stress distribution 

map element by element, replacing the 1  value of the element with the median value of 

neighboring elements. In the case when the stress evaluation is sufficiently accurate, this 

simple technique is sufficient to reduce efficiently the over-segmentation phenomenon. 

This algorithm allows extracting N zones nS , each of them containing a local maximum of the 

first principal stress like a “hill peak”.  

 

2.4 Drawing the potential crack paths 

In each zone nS  a potential crack can be created. According to the maximal principal 

stress criterion, the direction of the newly created crack is perpendicular to the first principal 

stress. This criterion permits to draw a principal stress trajectory from each “hill peak”. The 

following algorithm is used to determine the crack paths: 

6. From the point  0 0,x y corresponding to the “hill peak” in nS , we draw first the right 

branch of the predicted crack path. To this end, we calculate the coordinates

1 0 0 1 0 0cos , sinx x l y y l     , where 0  is the angle of the first principal 

stress trajectory at the point  0 0,x y . Varying l  if necessary such that the point 

 1 1,x y  is located in an adjacent element; 

7. If the point  1 1,x y  is not located in nS , go to step 5. Else from the point  1 1,x y  and 

with the angle of the first principal stress trajectory 1 at this point, calculate   

2 1 1 2 1 1cos , sinright rightx x l y y l      and 

2 1 1 2 1 1cos , sinleft leftx x l y y l      

Varying l  if necessary such that the points  2 2,right rightx y and  2 2,left leftx y  are 

located in the adjacent elements; 

8. Let 2 2 2 2,right rightx x y y  if 1 2 2( , )right rightx y > 1 2 2( , )left leftx y , else let 2 2 2 2,left leftx x y y  ;  

9. Let 1 2 1 2,x x y y  and go to step 2 until  2 2,x y  is no longer located in nS . 

10. From the point  0 0,x y , draw the left branch of the predicted crack path by following 

the same algorithm as above-described. 



  

For each zone nS , a potential crack path is drawn. Simultaneously, the length of the crack 

path can be obtained by cumulating l . 

 

2.5 Creation of cracks by using the maximum energy release rate criterion  

It is clear that even all the predicted crack paths can be drawn by using the above-described 

algorithm, they will probably not all be activated to become real cracks. Which ones of them 

become real cracks depend on the fulfillment of the energy criterion inc

cS G G     .  

All the combinations of the possible crack extensions should be considered in order to find the 

maximal energy release rate. If we have predicted N potential crack paths and each path may 

become real crack or not, 2N
 combinations are possible to become real cracks. Consequently, 

2N
 linear elastic finite element resolutions have to be performed: one for the structure before 

crack extension, and 2 1N   for the structure with all the possible crack extension 

combinations. The combination which makes G
inc

 maximum and verifies the Griffith criterion 
inc

cG G  will become real cracks.  

For the creation of the new cracks, different approaches exist in the framework of the finite 

element method. We believe that the algorithm proposed above allows using the following 

techniques: 

4. Remove the elements along the predicted crack paths [25]; 

5. Remesh the elements near the predicted crack path by creating a new crack [26]; 

6. Introduce discontinuities along the predicted crack paths [27]. 

It is clear that amongst all these methods the first one is the simplest. For this reason it was 

used in the present work. In practice, we find all elements in interception with the predicted 

crack paths, and then remove them from the finite element model. In return, this obviously 

requires a sufficiently fine mesh to be as close as possible to the concept of crack. 

2.7 Overall algorithm 

In order to avoid complicated snap-back analyses and to guarantee the existence of the 

solutions, the external loads are applied incrementally by imposing displacements on the 

boundaries of the considered structure until a prefixed level. By using the techniques 

described above, we can construct an overall algorithm as follows: 

8. At each loading step, a first finite element calculation is carried out to determine the 

stress distribution and the total potential energy 0  in the structure; 

9. With the obtained stress distribution and by using the watershed flooding process, we 

first find N zones nS in which 1 c   and containing each a local maximum of 1 ; 

10. If N = 0, increase the external loads and go to step 1.  

11. Else, in each such zone nS , a potential crack path is drawn by following a principal 

stress trajectory; 



  

12. By activating or not each potential crack path, perform 2 1N   finite element 

calculations for all possible combinations and find the corresponding total potential 

energies i  and the crack length increment il . For each combination, we calculate 

the incremental energy release rate 0inc i
i

i

G
l

 
 


; 

13. Consider the crack path having the maximal incremental energy release rate inc

iG . If 

the energy criterion  max( )inc

i cG G  is fulfilled, create the corresponding new cracks 

by eliminating all elements along the predicted crack paths. Go to step 1; 

14. Go to step 1 without increasing the external loads.  

3. Validation and numerical examples 

In order to validate the proposed numerical fracture model, we carry out numerical 

simulations on some special structures for which the fracture modes are well-known or well-

studied in the literature. Through these examples, the efficiency and the accuracy of the model, 

especially the mesh independency and the capacity in modelling the multiple cracking 

processes, are also discussed.  

 

 (1): Crack initiation from a hole in a plate  

An earlier experimental work [28] showed that the strength of a drilled plate depends closely 

on the hole size. It was shown that this size effect can be captured by using the coupled 

criterion. In this work, we will evaluate the remote loads at fracture of the specimens by using 

the present numerical tool and compare them with the theoretical predictions, obtained by 

creating an ideal crack from the hole boundary and calculating its exact stress intensity factor 

according to the CC. Since the material used in the experiments, the polymethyl metacrylate 

(PMMA), is a very brittle material, the crack initiation leads to immediate structure failure of 

the specimens. Therefore, the remote load at the crack onset is considered as the strength of 

the drilled plate. 

The mechanical characteristics of the material are as follows: Young’s modulus E = 3000 

MPa, Poisson’s ratio  = 0.36; the ultimate tensile stress c = 72 MPa; the critical energy 

release rate Gc = 290 J/m
2
. The section of the specimens is of 10×30 mm

2
. The strengths of 

the plate with holes of different sizes are evaluated by using the present numerical method. In 

order to evaluate the influence of the mesh size on the crack onset prediction, three different 

element sizes near the hole are used in the simulations, namely d = 0.005, 0.01 and 0.02mm, 

where d is the average edge length of the triangular elements. It is useful to note that the 

characteristic length of the material is given by  
2

2c cK   =0.026mm.  

The numerical predictions of the strength for different hole sizes are plotted in Figure 2. The 

ordinate axis represents c  , the ratio of the remote tensile stress at fracture over the 

ultimate tensile stress. For comparison, the theoretical predictions obtained by using the CC 

[13, 28] are also plotted. From this figure, we can remark that the numerical strength 



  

predictions agree very well with the theoretical ones for fine meshes, i.e., for d = 0.005 and  

0.01mm. For the coarser mesh d = 0.02mm, the agreement is still good when the hole 

diameter is larger than 1mm. The numerical predictions become slightly more conservative 

than the theoretical ones when the hole diameter is smaller than 1mm. As expected,  tends 

to c as the hole size tends to zero, it tends to 3c  as the hole is large. 

The main difference between the theoretical and numerical approaches remains in the fact that 

the creation of ideal cracks in the theoretical approach is replaced by the removed elements in 

the numerical one. The decrease of the total potential energy is more important in the case 

when deleting elements, which leads to an over-estimation of the incremental energy release 

rate. Consequently, the prediction of the crack onset from a non-cracked structure is more 

conservative by using the element elimination technique. This error can be reduced by using 

refined mesh. From Figure 2, we can remark that the mesh sizes d = 0.005 and 0.01mm give 

very satisfactory crack onset predictions comparing to the theoretical predictions. We can also 

observe that when the mesh is sufficiently refined, the crack onset prediction is very weakly 

mesh-dependent. It is also worthy to note that the element elimination technique is much 

simpler to implement in a numerical code than the creation of real cracks, especially for 

multi-cracking problems.  

 

 
 

Figure 2: Critical remote stress at fracture of the drilled specimens as function of the hole size. 

Comparison between the theoretical and numerical predictions 

 

Figure 3 shows the first steps of the crack initiation and growth from the hole boundary. The 

elements in which the stress condition 1 c   is fulfilled are drawn in green. The predicted 
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crack path is plotted in black line. The elements drawn in red are at the intersection with the 

predicted crack path and have to be deleted. The black band represents the already removed 

elements. The crack onset is predicted according to the CC, i.e., both the stress and energy 

criteria are fulfilled, that explains the quite lengthy crack initiation (about 0.07mm, Fig. 3a). 

After the initiation, the crack grows rapidly under fixed remote displacement loading and it 

follows unstable crack propagation (Fig. 3b-3c) as observed in the experiments [28].   

 

 

(b)                                        (b)                                                   (c) 

Figure 3: Numerical simulation of the crack initiation and growth (a): crack onset from the 

hole boundary (b)-(c): crack growth under unchanged remote displacement load 

 

(2): Crack initiation from the tip of a V-notch 

Leguillon [13] performed a detailed study on crack onset from the tip of a sharp V-notch, on 

the basis of which the CC was proposed.  By using the CC, the remote loads at fracture, the 

crack direction and the crack onset length were successfully predicted. In fact, the asymptotic 

stress along the crack path can be written as 

   1

0 0,r kr s     (4) 

where 0  is the crack orientation with respect to the V-notch bisector; r is the distance 

between the V-notch tip and a point at the crack path. The singularity exponent is such that 

1/2 1 and k is the generalized stress intensity factor.  The potential energy change at a 

crack onset is written: 

2 2

0( )k K l t     (5) 



  

where t is the thickness of the specimen; l is the crack onset length and K  is a scaling term 

depending on the opening angle and the crack direction. The use of the CC (i.e. (4) for 0 r  

l and (5)) leads to the crack onset criterion in terms of the generalized stress intensity factor: 
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In [13], the coefficients k and K were evaluated by means of the matched asymptotic 

procedure. The crack direction 0  maximizes the denominator in the right hand side of (6). 

Hereafter we evaluate the remote loads at crack onset of a V-notched specimen and compare 

the results with Leguillon’s predictions. The geometry and the loading condition of the 

specimen are illustrated in Figure 4. The thickness of the specimen is e = 5mm. 

Displacements are prescribed at its top and bottom ends. The material parameters are as 

follows: Young’s modulus E = 3000 MPa, Poisson’s ratio  = 0.36; the ultimate tensile stress 

c = 72 MPa; the critical energy release rate Gc = 290 J/m
2
. The V-notch opening angle is 2 

= 90°. Fine mesh is used around the V-notch tips with the element size d = 0.005mm. Three 

loading cases, the pure tension, the pure shear and a mixed mode, are studied (Table 1). Eqn. 

(6) can be used in the two first cases, considering either the first (symmetric) or second 

(antisymmetric) mode of the Williams expansion associated with two different exponents   

(Table 1). In the more entangled mixed mode, an extension of (6) must be used, taking into 

account together the two above mentioned modes. See [29,30] for the generalization of (6) to 

complex loadings. 

The remote prescribed displacements u1 or u2 are incrementally increased until the CC is 

fulfilled. The critical remote resulting forces F1 for shear and F2 for tension obtained in this 

way are compared with the results using Leguillon’s method, as shown in the following table: 

 

Table 1: Critical remote loads at crack initiation of V-notched specimens 

Prescribed  

displacements 
u1 = 0 and u2  0 

pure tension 

u1  0 and u2 = 0 

pure shear 

u1/u2 = 10 

mixed mode 

Leguillon’s method λ = 0.545 

θ0 = 0 deg.  

F1= 0 

F2 = 2048 N 

λ = 0.906 

θ0 = 57 deg. 

F1= 10819 N 

F2 = 0 

λ1 = 0.545, λ2 = 0.906 

0  35 deg. 

F1= 4731 N 

F2 = 1752 N 

Present numerical 

method 

θ0 = 0 deg. 

F1= 0 

F2 = 2082 N 

θ0 = 54 deg. 

F1= 10931 N 

F2 = 0 

θ0 = 31 deg. 

F1= 4611 N 

F2 = 1746 N 

 

This comparison shows that the numerical predictions agree very well with the matched 

asymptotic procedure proposed in [13]. The differences on the critical remote loads are 

limited within 2%. The agreement between the crack directions may seem less accurate but it 



  

must be pointed out that it is difficult to measure in the numerical simulation, where the crack 

has a somewhat saw-tooth appearance caused by the removed elements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Geometry and load conditions of the V-notched specimen 

 

(3): Crack initiation and growth  

The third example in the validation of the present model is a plate including a central crack 

subjected to a pure mode-I remote loading. We will show that in this case, the CC is 

equivalent to the Griffith criterion if the pre-existing crack is long enough.  

Consider a 2D square plate with a central crack of length 2a. The dimension of the specimen 

is 2W2W = 10 10 mm
2
. We evaluate the critical remote loads for crack growth with a 

central crack of different sizes, namely a/W = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4 and 

0.5, here a = 0 means that there is no crack in the plate. The mechanical properties of the 

material are: Young’s modulus E = 3000 MPa, Poisson’s ratio  = 0.3, ultimate stress c = 

150 MPa, critical stress intensity factor 67MPa mmcK  . By considering the symmetry, 

only one half of the plate is modeled. In order to investigate the influence of the mesh size, 

different element sizes near the crack tip are used in the simulations, namely d = 0.003, 0.006 

and 0.01mm, where d is the average edge length of the triangular elements. A uniaxial tension 

along the direction normal to the crack was applied at the ends of the plate by imposing 

incrementally increasing displacements. The remote load is applied gradually until the CC is 

verified. Figure 5 shows the fracture details near the crack tip.  

100mm 

 

25mm 

u1, F1 

u1, F1 

u2, F2 

u2, F2 

100mm 



  

 

 

 

Figure 5: Growth simulation of a central crack. The black band represents the removed 

elements after the first step of the crack growth.   

 

 

 

Figure 6: Normalized stress intensity factor KI/KIc and normalized remote stresses c 
 as a 

function of the normalized semi-crack length a/W for mode-I loaded cracks at fracture. 

 

The critical remote load at crack propagation thus obtained was used to calculate the stress 

intensity factor by using a formula found from a handbook of stress intensity factors [31]. By 

comparing the obtained stress intensity factors to the critical value cK , we can evaluate the 

accuracy of the method for crack growth prediction. The results of these calculations are 
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shown in Figure 6. From this figure, we can observe that for sufficiently long cracks (a/W > 

0.05), the normalized stress intensity factor 1cK K  . Therefore, the stress intensity factors at 

fracture evaluated by using the CC equal correctly the material fracture toughness. For very 

short cracks, the Griffith fracture criterion is no longer sufficient to predict the crack growth. 

The critical stress intensity factor decreases as the crack length decreases. Moreover, the 

remote stress at fracture tends to the material tensile strength as the crack length tends to zero. 

In this case, the CC degenerates to the maximum principal stress criterion for nonsingular 

stresses.  

We can observe that the crack growth prediction is very weakly mesh-sensitive when 

sufficiently refined meshes are used. Apart from the results calculated with d = 0.01mm that 

represents quite a coarse mesh, the calculations with finer meshes, e.g. d = 0.003mm and 

0.006mm, provide us with very close values for remote loads at fracture. In fact, the predicted 

crack path should contain sufficient number of elements in order to guarantee a good accuracy 

on the stress and energy calculations. For crack growth, the length of predicted crack path can 

be calculated by  
2

2 0.032c cl K    mm for the used material with the parameters 

above-mentioned. From Figure 6, we remark that the element size d =l/5 offers already 

sufficient accuracy for the crack growth prediction. The complete mesh-independency can be 

expected by using very refined meshes, which will increase drastically the computational 

costs.  

 

(4): Crack path tracking: interaction of two cracks 

The present method enables efficient crack path tracking when the stress field is accurately 

evaluated. We illustrate this feature by the following example.  Consider a rectangular plate 

with two non-symmetric cracks at its side edges subjected to tensile loading (Figure 7). We 

calculate the critical remote load at fracture and the crack paths by using the proposed method 

and then compare them with the results found in the literature.  Recently, Judt and Ricoeur 

[32] studied this problem by using a variant of the J-integral technique [33]. The geometry of 

the specimen is shown in Figure 7. The material parameters are chosen as follows: Young’s 

modulus E = 72 000 MPa, Poisson’s ratio  = 0.33, ultimate stress 300MPac  and material 

fracture toughness Kc = 23.9 MPa m .  

It is clear that the initial geometrical symmetry of the crack positions is unstable. From 

experimental or numerical point of view, a small perturbation can break this symmetry such 

that one of the cracks can first grow while the other remains arrested. In order to keep 

approximately the geometrical symmetry during the crack propagation, we enforce the 

simultaneous growth of the two cracks, even though the minimum potential principle may be 

slightly violated.   

In order to assess the mesh-sensitivity of the method, we performed simulations with 3 

element sizes, namely d = 0.075mm, 0.1mm and 0.15mm. In Figure 7, we show the crack 

paths obtained with the different meshes. For comparison, the crack paths obtained in [32] are 



  

also plotted in this figure. We can see that the three meshes provide almost the same crack 

paths which agree very well with the result presented in [32]. Here again, the mesh-sensitivity 

is shown very weak with the adopted meshes and the accuracy of the proposed model is 

satisfactory in predicting the crack paths. 

 

 

Figure 7: Crack paths predicted by using different meshes in a plate with double cracks 

 

(5): Multi-cracking: Cracking in fiber-reinforced epoxy cross-ply laminates 

Multiple crack initiations and growths can occur simultaneously. Simulation of multiple 

cracking processes is a big challenge for computational mechanics. The proposed numerical 

model is able to deal with this problem in a rigorous manner. In fact, all the possible new 

crack loci are examined by applying the CC and the best combination of them that makes the 

total potential energy minimal is selected as the next cracks extensions.  

In the following, we consider the experimental works performed by Parvizi et al. [34] on the 

transverse fracture of glass fiber-reinforced cross-ply laminates. The numerical simulations of 

their experiments can be used to validate Leguillon’s criterion and also, to show the ability of 

the proposed method in modelling the multi-cracking process.  

Parvizi et al. [34] carried out tensile tests on a cross-ply glass fiber-reinforced composite 

made of two outer layers oriented at 0◦ (fibers are parallel to the tension direction) and an 

inner one oriented at 90◦, as shown in Figure 8. The thickness of the inner ply was varied and 

the applied strain at the first occurrence of a transverse crack was recorded. As the applied 

load increases, multiple cracks were observed in the inner ply. 

 



  
 

Figure 8: Scheme of the tensile tests on a cross-ply glass fiber-reinforced composite Include the  

 

The samples were modeled by using bi-dimensional plane-strain triangle elements. Only one 

half of the sample was meshed by symmetry. The plies were regarded as orthotropic materials 

with the following Hooke’s law: 
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According to the data given in [32], the mechanical properties of the outer ply are: Ex = 14000 

MPa; Ey = 42000 MPa; x = 0.13; y = 0.4;  xy = 10000 MPa , and for the inner ply : Ex = Ey = 

14000 MPa; x= y = 0.13; xy =6194 MPa . The outer ply was considered as unbreakable. 

For the inner ply, according to [34], we took c = 84MPa and Gc = 0.12 MPa mm. The length 

of the samples is taken to be sufficiently long (L = 10mm) such that the appearance of the first 

crack is not influenced by the length of the samples. The thickness of the outer ply is 0.5 mm. 

Several thicknesses of the inner ply were considered in the simulation, namely 2e = 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 1, 4mm respectively. The specimens were subjected to uniaxial tension in 

the vertical direction by imposing incrementally increasing displacements on the outer layers 

of the composite. 

      We first illustrate how the proposed method initiates the first crack in the inner ply. Figure 

9–a shows the distribution of the first principal stresses in the inner ply just before the onset of 

the first crack. In Figure 9–b, we plot the first principal stresses of the inner ply along the 

interface. From these two figures, we can find that the stress concentrations are of a very high 

level at the two ends of the specimen near the interface. At the center of the specimen, it 

appears a very large zone in which the first principal stress exceeds the material strength with 

a nearly uniform distribution. The proposed algorithm should choose the location of the first 



  

crack initiation according to the CC. In fact, three zones including a local stress maximum 

were first found by applying the watershed line method, as shown in Figure 9–c. Then the 

potential crack paths were created from the local stress maxima by following the direction 

normal to the first principal stress. As shown in Figure 9–d, although the stress concentration 

is much higher at extremities than in the central part of the specimen, the potential crack paths 

are much shorter. Consequently, these potential cracks have small impact on the total 

potential energy so that the energy criterion is not fulfilled. On the contrary, the potential 

crack at the central part of the specimen is much longer. Its activation provokes a much larger 

variation of the total potential energy. Consequently, both the stress and energy criteria are 

fulfilled to create first a new crack at the central part of the specimen. This is what was 

observed in the experiments [34].                     

 

 

(b)          (b)         (c)             (d) 

Figure 9: Stress distribution and the potential crack paths. (a) Distribution of 1 / c  ; (b) 

Variation of 1 / c   along the interface; (c) Three zones found in which there is a local 

maximum of 1 / c   ≥ 1; (d) Potential crack paths 

 

 By following this method, we simulated the experiments for specimens of different 

thicknesses of the inner layer. The imposed longitudinal strains at first crack initiation were 

obtained, then compared with the experimental data of Parvizi et al., as shown in Figure 10.  

We can remark a very satisfactory agreement between the numerical and experimental results. 



  

In fact, for specimens with a thin inner ply, the energy criterion governs the failure while the 

stress criterion is trivially fulfilled. The contrary occurs for specimens with a thick inner ply. 

   

 

Figure 10: Nominal strain at the occurrence of the first transverse crack versus the thickness 

of the inner ply 

 

It is clear that one of the interesting features of the proposed method is its ability to simulate 

the multi-cracking process in composite materials for instance. The further crack creation 

process in the laminate was simulated for different thicknesses of the inner ply. In Figure 11, 

we plot the density of the transverse cracks in the inner ply as a function of the prescribed 

strain. As expected, specimens with a thin inner ply sustain higher loads for the first crack 

formation. However, the crack density increases rapidly  as the load increases. For specimens 

with a thick inner ply, the first crack formation requires smaller remote loads. As the stress 

relaxation is larger when creating a longer crack, the further crack formation requires higher 

remote loads. This trend was also observed in some experimental works [35] on thin coatings. 

   

 



  

 

Figure 11: Crack density as function of Nominal strain for different thickness of the inner ply 

 

(6): Cracking in composite materials 

In this section, we attempt to assess the multi-cracking process in composite materials. In this 

case, the strengths and the fracture toughness are function of the spatial coordinates. In this 

case, the watershed technique permits to create automatically distinct potential cracks in 

adjacent materials of the composite. According to the CC, we have to ensure that S    is 

maximal for the crack combination. However, a global energy criterion     cS G does 

not exist for creating several cracks simultaneously as the values of cG may be different for 

each crack. In order to overcome this difficulty, we assume furthermore that the energy 

criterion 
( ) ( ) ( )i i i

cS G     is fulfilled for all the individual cracks of the combination, 

where
( )i , 

( )iS , 
( )i

cG  are respectively potential energy change, the newly created crack 

surface and the critical energy release rate when only the crack (i) is activated in a single 

material component of the composite.  

 

To illustrate this feature, we consider again the fiber-reinforced laminate formerly treated in 

example (5) by taking some scattering into account. In the following simulations, we assume 

that the strength and the fracture toughness are randomly distributed in the inner ply of the 
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composite following a Weibull distribution. The two parameters Weibull’s law used in this 

work writes: 

 
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where  cf   stands for the failure probability at 1 c  , m and  are the Weibull 

parameters, with m = 9 and  = 89 MPa. Following this probability function, the material 

strength is randomly distributed in the inner ply by spots of 0.5 mm × e. The fracture 

toughness of each spot is related to the strength by  
2

0.132c cG   MPa.mm. These 

strength and fracture toughness distributions will generate approximately a mean strength of 

84 MPa and a mean fracture toughness of 0.12 MPa.mm as those in example (5). One of the 

strength distributions and the frequency histogram are shown in Figure 12.  

 

(a)         (b) 

Figure 12: (a) Strength distribution in the inner ply according to the Weibull model (b) 

Histogram of strength 

By means of this probabilistic approach, the previous numerical simulations were revisited. 

The numerical results are plotted in Figure 13. Comparing to Figure 11, the curves of crack-

density vs. nominal strain show more graduate variation with a gentle slope. These results 

exhibit a better similarity to those obtained in experiments [35]. 



  

Figure 14 shows the crack patterns in the inner ply obtained by using the deterministic and 

probabilistic approaches respectively. Noting that the crack pattern of the deterministic model 

is very regular; the cracks appear by following nearly a dichotomy rule, while the 

probabilistic model provides a more irregular crack pattern. We can also note that small 

cracks emerge when the crack density reaches a critical level for both the deterministic and 

probabilistic models. In real composite materials, the interface debonding is often observed 

instead of the small transverse cracks. As the interface debonding is not taken into account in 

the present work, the small transverse cracks appear in the numerical simulations.    

This example shows numerous capacities of the proposed method in simulating multi-

cracking process in heterogeneous materials. As our attention is focused on the methodology 

description, detailed comparison with experimental works has not been realized.    

     

 

Figure 13 Crack density as function of Nominal strain for different thickness of the inner ply 

according to the Weibull model 
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(a)        (b) 

Figure 14: Crack patterns in the inner ply obtained by using the deterministic (a) and 

probabilistic (b) approaches respectively at nominal strain ε = 0.0115 

 

4. Conclusions 

In this work, we have implemented the fracture criterion proposed by Leguillon [13] into a 

finite element code for simulating two-dimensional cracking process in brittle materials. By 

means of a large number of examples for which the solutions are well-known or well-studied 

in the literature, the validity of the proposed numerical model was confirmed. It was shown 

that this numerical model presents several advantages, for example:   

- Both crack initiation and crack growth can be predicted; 

- Multi-cracking problems can easily be considered; 

- Cracking process in heterogeneous materials can be simulated; 

- Once the finite element model provides sufficient accuracy on stress evaluation, the fracture 

prediction is nearly mesh-insensitive.  

- Convergence can always be guaranteed if displacement boundary conditions are prescribed.   

- Only linear elastic calculations are required. This allows building a robust and efficient 

computational algorithm. 

It is clear that further researches are necessary to improve the numerical model. One of the 

tasks is to build smooth stress fields in order to avoid the over-segmentation problem that 

leads to too many potential cracks. In this topic, the denoising techniques developed in image 

processing science [24] should be more thoroughly investigated. Another drawback of the 

model may be its huge computational costs required for a large number of cracks. Even 

though parallel computing techniques can largely increase the calculation speed, 



  

supplementary hypotheses and more efficient algorithms are expected to reduce the 

computational tasks.   

The couple criterion for fracture prediction is conceptually simple and physically reasonable. 

Its numerical implementation opens a new way to describe the cracking process in solids. We 

believe that many other complex problems in fracture evaluations can be treated by 

developing more operational numerical tools. 
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Highlights 

 

 A new numerical fracture model for brittle materials was established on the basis of 

the coupled criterion; 

 Both crack initiation and crack growth in complex 2D structures can accurately be 

predicted; 

 Multiple cracking processes can be simulated.  

 The fracture predictions are weakly mesh-sensitive.  

 


