C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, pp.203-253, 1995.
DOI : 10.1016/0168-9525(93)90039-K

R. M. Warga and C. B. Kimmel, Cell movements during epiboly and gastrulation in zebrafish, Development, vol.108, pp.569-580, 1990.

S. E. Lepage and A. E. Bruce, Zebrafish epiboly: mechanics and mechanisms, The International Journal of Developmental Biology, vol.54, issue.8-9, pp.1213-1228, 2010.
DOI : 10.1387/ijdb.093028sl

A. E. Bruce, Zebrafish epiboly: Spreading thin over the yolk, Developmental Dynamics, vol.2, issue.3, pp.244-258, 2016.
DOI : 10.1038/35052055

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvdy.24353/pdf

C. B. Kimmel and R. D. Law, Cell lineage of zebrafish blastomeres, Developmental Biology, vol.108, issue.1, pp.86-93, 1985.
DOI : 10.1016/0012-1606(85)90011-9

L. T. Chu, S. H. Fong, I. Kondrychyn, S. L. Loh, Z. Ye et al., Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo, Biology Open, vol.1, issue.8, pp.747-753, 2012.
DOI : 10.1242/bio.20121636

L. Solnica, Gastrulation in zebrafish ??? all just about adhesion?, Current Opinion in Genetics & Development, vol.16, issue.4, pp.433-441, 2006.
DOI : 10.1016/j.gde.2006.06.009

J. C. Cheng, A. L. Miller, and S. E. Webb, Organization and function of microfilaments during late epiboly in zebrafish embryos, Developmental Dynamics, vol.77, issue.2, pp.231-313, 2004.
DOI : 10.1093/icb/24.3.673

S. J. Lee, Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly, Biochemical and Biophysical Research Communications, vol.452, issue.1, pp.452-453, 2014.
DOI : 10.1016/j.bbrc.2014.08.005

D. L. Shi, A. Bourdelas, M. Umbhauer, and J. C. Boucaut, Zygotic Wnt/beta-catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus, Dev. Biol, pp.245-124, 2002.

J. M. Cao, S. Q. Li, M. Shao, X. N. Cheng, Z. G. Xu et al., The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish, Journal of Genetics and Genomics, vol.41, issue.8, pp.417-428, 2014.
DOI : 10.1016/j.jgg.2014.06.008

URL : https://hal.archives-ouvertes.fr/hal-01539347

C. C. Campa, E. Ciraolo, A. Ghigo, G. Germena, and E. Hirsch, Crossroads of PI3K and Rac pathways, Small GTPases, vol.6, issue.2, pp.71-80, 2015.
DOI : 10.4161/21541248.2014.989789

L. A. Feig, Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases, Nature Cell Biology, vol.1, issue.2, pp.25-27, 1999.
DOI : 10.1038/10018

Y. Gao, J. B. Dickerson, F. Guo, J. Zheng, and Y. Zheng, Rational design and characterization of a Rac GTPase-specific small molecule inhibitor, Proceedings of the National Academy of Sciences, vol.99, issue.22, pp.7618-7623, 2004.
DOI : 10.1073/pnas.222222699

S. Even-ram, A. D. Doyle, M. A. Conti, K. Matsumoto, R. S. Adelstein et al., Myosin IIA regulates cell motility and actomyosin???microtubule crosstalk, Nature Cell Biology, vol.23, issue.3, pp.299-309, 2007.
DOI : 10.1002/(SICI)1097-0169(200005)46:1<59::AID-CM6>3.0.CO;2-Q

C. P. Choe, A. Collazo, A. Trinh, L. Pan, C. B. Moens et al., Wnt-Dependent Epithelial Transitions Drive Pharyngeal Pouch Formation, Developmental Cell, vol.24, issue.3, pp.296-309, 2013.
DOI : 10.1016/j.devcel.2012.12.003

URL : http://doi.org/10.1016/j.devcel.2012.12.003

C. J. Vlahos, W. F. Matter, K. Y. Hui, and R. F. Brown, A specific inhibitor of phosphatidylinositol 3- kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), J. Biol. Chem, pp.269-5241, 1994.

J. A. Montero, B. Kilian, J. Chan, P. E. Bayliss, and C. P. Heisenberg, Phosphoinositide 3-Kinase Is Required for Process Outgrowth and Cell Polarization of Gastrulating Mesendodermal Cells, Current Biology, vol.13, issue.15
DOI : 10.1016/S0960-9822(03)00505-0

F. C. Leskow, B. A. Holloway, H. Wang, M. C. Mullins, and M. G. Kazanietz, The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development, Proceedings of the National Academy of Sciences, vol.102, issue.1, pp.5373-5378, 2006.
DOI : 10.1016/0378-1119(91)90539-N

. Solnica-krezel, Galpha12/13 regulate epiboly by inhibiting E-cadhrin activity and modulating the actin cytoskeleton, J. Cell Biol, vol.184, pp.909-921, 2009.

S. L. Lai, C. N. Chang, P. J. Wang, and S. J. Lee, Rho mediates cytokinesis and epiboly via ROCK in zebrafish, Molecular Reproduction and Development, vol.143, issue.2, pp.71-186, 2005.
DOI : 10.1128/MCB.17.4.2247

M. Köppen, B. G. Fernandez, L. Carvalho, A. Jacinto, and C. P. Heisenberg, Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila, Development, vol.133, issue.14, pp.2671-2681, 2006.
DOI : 10.1242/dev.02439

. Heisenberg, Forces driving epithelial spreading in zebrafish gastrulation, Science, vol.338, pp.257-260, 2012.

M. Siddiqui, H. Sheikh, C. Tran, and A. E. Bruce, The tight junction component Claudin E is required for zebrafish epiboly, Developmental Dynamics, vol.108, issue.2, pp.715-722, 2010.
DOI : 10.1002/jez.1401180204

M. Lachnit, E. Kur, and W. Driever, Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos, Developmental Biology, vol.315, issue.1, pp.315-316, 2008.
DOI : 10.1016/j.ydbio.2007.10.008

J. P. Trinkaus, A study of the mechanism of epiboly in the egg of Fundulus heteroclitus, Journal of Experimental Zoology, vol.9, issue.2, pp.269-319, 1951.
DOI : 10.1086/physzool.14.1.30151600

T. Betchaku and J. P. Trinkaus, Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly, Journal of Experimental Zoology, vol.9, issue.3, pp.206-381, 1978.
DOI : 10.1016/B978-0-12-395618-7.50009-3