J. M. Lindstrom, M. E. Seybold, V. A. Lennon, S. Whittingham, and D. D. Duane, Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value, Neurology, vol.26, issue.11, pp.1054-1059, 1976.
DOI : 10.1212/WNL.26.11.1054

N. Sinmaz, T. Nguyen, F. Tea, R. C. Dale, and F. Brilot, Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system, Journal of Neuroinflammation, vol.32, issue.296, pp.10-1186, 2016.
DOI : 10.1038/aps.2011.27

F. Truffault, Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review Clinical reviews in allergy & immunology 52, pp.108-12410, 2017.

G. I. Wolfe, Randomized Trial of Thymectomy in Myasthenia Gravis, New England Journal of Medicine, vol.375, issue.6, pp.511-52210, 2016.
DOI : 10.1056/NEJMoa1602489

J. B. Kuks, H. J. Oosterhuis, P. C. Limburg, and T. H. The, Anti-acetylcholine receptor antibodies decrease after thymectomy in patients with myasthenia gravis. Clinical correlations, Journal of Autoimmunity, vol.4, issue.2, pp.197-211, 1991.
DOI : 10.1016/0896-8411(91)90018-8

S. Berrih-aknin, The Role of the Thymus in Myasthenia Gravis: Immunohistological and Immunological Studies in 115 Cases, Annals of the New York Academy of Sciences, vol.633, issue.1 Myasthenia Gr, pp.50-70, 1987.
DOI : 10.1016/0022-510X(81)90170-2

C. Leprince, Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis, J Immunol, vol.145, pp.2115-2122, 1990.

A. Meraouna, The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis, Blood, vol.108, issue.2, pp.432-440, 2006.
DOI : 10.1182/blood-2005-06-2383

L. Panse, R. Cizeron-clairac, G. Bismuth, J. Berrih-aknin, and S. , Microarrays Reveal Distinct Gene Signatures in the Thymus of Seropositive and Seronegative Myasthenia Gravis Patients and the Role of CC Chemokine Ligand 21 in Thymic Hyperplasia, The Journal of Immunology, vol.177, issue.11, pp.7868-7879, 2006.
DOI : 10.4049/jimmunol.177.11.7868

J. M. Weiss, SDF-1/CXCL12 recruits B cells and antigen-presenting cells to the thymus of autoimmune myasthenia gravis patients, Immunobiology, vol.218, issue.3, pp.373-381006, 2013.
DOI : 10.1016/j.imbio.2012.05.006

M. Baggiolini, Chemokines and leukocyte traffic, Nature, vol.392, issue.6676, pp.565-568, 1998.
DOI : 10.1038/33340

I. Banisor, T. P. Leist, and B. Kalman, Involvement of beta-chemokines in the development of inflammatory demyelination, Journal of neuroinflammation, vol.2, issue.7, pp.10-1186, 2005.

T. Ellingsen, A. Buus, and K. Stengaard-pedersen, Plasma monocyte chemoattractant protein 1 is a marker for joint inflammation in rheumatoid arthritis, The Journal of rheumatology, vol.28, pp.41-46, 2001.

S. Narumi, T. Takeuchi, Y. Kobayashi, and K. Konishi, SERUM LEVELS OF IFN-INDUCIBLE PROTEIN-10 RELATING TO THE ACTIVITY OF SYSTEMIC LUPUS ERYTHEMATOSUS, Cytokine, vol.12, issue.10, pp.1561-1565, 2000.
DOI : 10.1006/cyto.2000.0757

S. A. Luther, T. Lopez, W. Bai, D. Hanahan, and J. G. Cyster, BLC Expression in Pancreatic Islets Causes B Cell Recruitment and Lymphotoxin-Dependent Lymphoid Neogenesis, Immunity, vol.12, issue.5, pp.471-481, 2000.
DOI : 10.1016/S1074-7613(00)80199-5

URL : http://doi.org/10.1016/s1074-7613(00)80199-5

J. M. Weiss, Novel CXCL13 transgenic mouse: inflammation drives pathogenic effect of CXCL13 in experimental myasthenia gravis, Oncotarget, vol.7, issue.7, pp.7550-75626885, 2016.
DOI : 10.18632/oncotarget.6885

URL : https://hal.archives-ouvertes.fr/hal-01293674

G. Cizeron-clairac, Thymus and Myasthenia Gravis: what can we learn from DNA microarrays? Journal of neuroimmunology 201-202, pp.57-63028, 2008.
DOI : 10.1016/j.jneuroim.2008.06.028

S. Amur, A. Parekh, and P. Mummaneni, Sex differences and genomics in autoimmune diseases, Journal of Autoimmunity, vol.38, issue.2-3, pp.254-265, 2012.
DOI : 10.1016/j.jaut.2011.12.001

N. Dragin, Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases, Journal of Clinical Investigation, vol.126, issue.4, pp.1525-153710, 2016.
DOI : 10.1172/JCI81894DS1

URL : https://hal.archives-ouvertes.fr/hal-01310502

S. Oertelt-prigione, The influence of sex and gender on the immune response, Autoimmunity Reviews, vol.11, issue.6-7, pp.479-485, 2012.
DOI : 10.1016/j.autrev.2011.11.022

A. Lleo, P. M. Battezzati, C. Selmi, M. E. Gershwin, and M. Podda, Is autoimmunity a matter of sex? Autoimmunity reviews 7, pp.626-630, 2008.

G. Leuzzi, Thymectomy in myasthenia gravis: proposal for a predictive score of postoperative myasthenic crisis European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 45, pp.76-8810, 2014.

P. Nancy and S. Berrih-aknin, Differential Estrogen Receptor Expression in Autoimmune Myasthenia Gravis, Endocrinology, vol.146, issue.5, pp.2345-23532004, 2005.
DOI : 10.1210/en.2004-1003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839841

G. Muller, U. E. Hopken, and M. Lipp, The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity, Immunological Reviews, vol.69, issue.1, pp.117-135, 2003.
DOI : 10.4049/jimmunol.167.11.6330

C. D. Allen, Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5, Nature Immunology, vol.171, issue.9, pp.943-952, 2004.
DOI : 10.1038/ni1083

A. Wakkach, Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis, J Immunol, vol.157, pp.3752-3760, 1996.

K. Alexandropoulos and N. M. Danzl, Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development, Immunologic Research, vol.107, issue.6, pp.177-19010, 2012.
DOI : 10.1182/blood-2005-07-2831

L. Glace, Estrogen-induced stromal cell-derived factor-1 (SDF-1/Cxcl12) expression is repressed by progesterone and by Selective Estrogen Receptor Modulators via estrogen receptor ?? in rat uterine cells and tissues, Steroids, vol.74, issue.13-14, pp.1015-1024011, 2009.
DOI : 10.1016/j.steroids.2009.07.011

F. Zhang, H. Kang, and Q. Xu, Estrogen increases secretion of stromal cell derived factor-1 in human breast cancer cells, International journal of clinical and experimental medicine, vol.7, pp.5529-5534, 2014.

A. Gradolatto, Defects of immunoregulatory mechanisms in myasthenia gravis: role of IL-17, Annals of the New York Academy of Sciences, vol.22, issue.1 supp, pp.40-47, 2012.
DOI : 10.1016/0046-8177(91)90132-9

S. Berrih, Interferon-gamma modulates HLA class II antigen expression on cultured human thymic epithelial cells, J Immunol, vol.135, pp.1165-1171, 1985.

P. Cufi, Central role of interferon-beta in thymic events leading to myasthenia gravis, Journal of Autoimmunity, vol.52, pp.44-52016, 2014.
DOI : 10.1016/j.jaut.2013.12.016

URL : https://hal.archives-ouvertes.fr/hal-01514459

H. Shen, Gender-dependent Expression of Murine Irf5 Gene: Implications for Sex Bias in Autoimmunity, Journal of Molecular Cell Biology, vol.2, issue.5, pp.284-290, 2010.
DOI : 10.1093/jmcb/mjq023

P. Gourdy, Relevance of sexual dimorphism to regulatory T cells: estradiol promotes IFN-?? production by invariant natural killer T cells, Blood, vol.105, issue.6, pp.2415-242010, 2005.
DOI : 10.1182/blood-2004-07-2819

U. P. Pratap, Estrogen upregulates inflammatory signals through NF-??B, IFN-??, and nitric oxide via Akt/mTOR pathway in the lymph node lymphocytes of middle-aged female rats, International Immunopharmacology, vol.29, issue.2, pp.591-598, 2015.
DOI : 10.1016/j.intimp.2015.09.024

G. Dong, 17??-Estradiol enhances the activation of IFN-?? signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKK??, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1852, issue.8, pp.1585-1598019, 2015.
DOI : 10.1016/j.bbadis.2015.04.019

D. Choubey, R. Panchanathan, X. Duan, H. Liu, and H. Liu, Emerging Roles for the Interferon-Inducible p200-Family Proteins in Sex Bias in Systemic Lupus Erythematosus, Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research, pp.893-9060073, 2011.
DOI : 10.1089/jir.2011.0073

R. Panchanathan, H. Liu, and D. Choubey, Expression of murine Unc93b1 is up-regulated by interferon and estrogen signaling: implications for sex bias in the development of autoimmunity, International Immunology, vol.25, issue.9, pp.521-529, 2013.
DOI : 10.1093/intimm/dxt015

M. L. Zhu, Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator, Nature Communications, vol.64, pp.10-1038, 2016.
DOI : 10.1158/0008-5472.CAN-03-3486

Y. Liang, A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases, Nature Immunology, vol.96, issue.2, p.3643, 2016.
DOI : 10.1111/1523-1747.ep12469889

M. Cutolo, A. Sulli, and R. H. Straub, Estrogen metabolism and autoimmunity, Autoimmunity Reviews, vol.11, issue.6-7, pp.460-464, 2012.
DOI : 10.1016/j.autrev.2011.11.014

S. Kovats, Estrogen receptors regulate innate immune cells and signaling pathways, Cellular Immunology, vol.294, issue.2, pp.63-69018, 2015.
DOI : 10.1016/j.cellimm.2015.01.018

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380804

A. Maret, Estradiol enhances primary antigen-specific CD4 T cell responses and Th1 development in vivo. Essential role of estrogen receptor ?? expression in hematopoietic cells, European Journal of Immunology, vol.33, issue.2, pp.512-52110, 2003.
DOI : 10.1002/immu.200310027

K. Lelu, Estrogen Receptor ?? Signaling in T Lymphocytes Is Required for Estradiol-Mediated Inhibition of Th1 and Th17 Cell Differentiation and Protection against Experimental Autoimmune Encephalomyelitis, The Journal of Immunology, vol.187, issue.5, pp.2386-2393, 2011.
DOI : 10.4049/jimmunol.1101578

URL : https://hal.archives-ouvertes.fr/hal-00697793

K. L. Medina, Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen, Nature Immunology, vol.12, issue.8, pp.718-724, 2001.
DOI : 10.1038/90659

M. L. Salem, Estrogen, A Double-Edged Sword: Modulation of TH1- and TH2-Mediated Inflammations by Differential Regulation of TH1 / TH2 Cytokine Production, Current Drug Target -Inflammation & Allergy, vol.3, issue.1, pp.97-104, 2004.
DOI : 10.2174/1568010043483944

G. A. Prieto and Y. Rosenstein, Oestradiol potentiates the suppressive function of human CD4+ CD25+ regulatory T cells by promoting their proliferation, Immunology, vol.163, issue.1, pp.58-65, 2006.
DOI : 10.1038/ni0901-777

M. J. Polanczyk, C. Hopke, A. A. Vandenbark, and H. Offner, Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1), International Immunology, vol.19, issue.3, pp.337-34310, 2007.
DOI : 10.1093/intimm/dxl151

C. Y. Luo, L. Wang, C. Sun, and D. J. Li, Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro, Cellular and Molecular Immunology, vol.3, issue.1, pp.50-5854, 2010.
DOI : 10.1016/j.bbrc.2007.11.120

S. S. Tabibzadeh, A. Sivarajah, D. Carpenter, B. M. Ohlsson-wilhelm, and P. G. Satyaswaroop, *, The Journal of Clinical Endocrinology & Metabolism, vol.71, issue.3, pp.740-74710, 1990.
DOI : 10.1210/jcem-71-3-740

J. Adamski, Z. Ma, S. Nozell, and E. Benveniste, 17beta-Estradiol inhibits class II major histocompatibility complex (MHC) expression: influence on histone modifications and cbp recruitment to the class II MHC promoter, Molecular endocrinology, vol.18, pp.102004-0098, 1210.

B. Kyewski and M. Feuerer, Love Is in the Aire: mTECs Share Their Assets, Immunity, vol.41, issue.3, pp.343-345013, 2014.
DOI : 10.1016/j.immuni.2014.08.013

R. H. Straub, The Complex Role of Estrogens in Inflammation, Endocrine Reviews, vol.28, issue.5, pp.521-57410, 2007.
DOI : 10.1210/er.2007-0001

R. Panchanathan and D. Choubey, Murine BAFF expression is up-regulated by estrogen and interferons: Implications for sex bias in the development of autoimmunity, Molecular Immunology, vol.53, issue.1-2, pp.15-23, 2013.
DOI : 10.1016/j.molimm.2012.06.013

F. Bar, Inflammatory bowel diseases influence major histocompatibility complex class I (MHC I) and II compartments in intestinal epithelial cells, Clinical & Experimental Immunology, vol.288, issue.2, pp.280-28910, 2013.
DOI : 10.1126/science.288.5465.522

P. Cufi, Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis, Annals of Neurology, vol.29, issue.suppl, pp.281-29310, 2013.
DOI : 10.1016/j.vaccine.2010.08.002

J. Adamski and E. N. Benveniste, 17??-Estradiol Activation of the c-Jun N-Terminal Kinase Pathway Leads to Down-Regulation of Class II Major Histocompatibility Complex Expression, Molecular Endocrinology, vol.19, issue.1, pp.113-124102004, 1210.
DOI : 10.1210/me.2004-0270

S. Berrih-aknin, CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia, Annals of Neurology, vol.6, issue.4, pp.521-53110, 2009.
DOI : 10.4049/jimmunol.173.8.4791

L. Delpy, Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses, The Journal of Immunology, vol.175, issue.8, pp.5050-5057, 2005.
DOI : 10.4049/jimmunol.175.8.5050

URL : https://hal.archives-ouvertes.fr/hal-00458865

G. T. Van-kempen and P. C. Molenaar, Effect of estradiol and progesterone on muscle weight and acetylcholine receptors in ?myasthenic? rats, Journal of Neural Transmission, vol.46, issue.3, pp.193-197, 1992.
DOI : 10.1007/BF01245365

R. R. Leker, A. Karni, T. Brenner, J. Weidenfeld, and O. Abramsky, Effects of sex hormones on experimental autoimmune myasthenia gravis, European Journal of Neurology, vol.40, issue.2, pp.203-206, 2000.
DOI : 10.1016/S0022-510X(98)00031-8

H. Qi, Genetic deficiency of estrogen receptor alpha fails to influence experimental autoimmune myasthenia gravis pathogenesis, Journal of Neuroimmunology, vol.234, issue.1-2, pp.165-167, 2011.
DOI : 10.1016/j.jneuroim.2011.03.002

G. J. Shim, L. L. Kis, M. Warner, and J. A. Gustafsson, Autoimmune glomerulonephritis with spontaneous formation of splenic germinal centers in mice lacking the estrogen receptor alpha gene, Proceedings of the National Academy of Sciences, vol.197, issue.9, pp.1720-17240307915100, 2004.
DOI : 10.1084/jem.20022014

G. J. Shim, Disruption of the estrogen receptor ?? gene in mice causes myeloproliferative disease resembling chronic myeloid leukemia with lymphoid blast crisis, Proceedings of the National Academy of Sciences, vol.19, issue.2, pp.6694-669910, 2003.
DOI : 10.1016/S0092-8674(00)81348-3

G. J. Shim, Aromatase-deficient mice spontaneously develop a lymphoproliferative autoimmune disease resembling Sjogren's syndrome, Proceedings of the National Academy of Sciences, vol.11, issue.5, pp.12628-1263310, 2004.
DOI : 10.1111/j.1365-2559.1987.tb02654.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC515108

S. Poea-guyon, Effects of Cytokines on Acetylcholine Receptor Expression: Implications for Myasthenia Gravis, The Journal of Immunology, vol.174, issue.10, pp.5941-5949, 2005.
DOI : 10.4049/jimmunol.174.10.5941

Y. Li, B. Xiao, L. Xiao, N. Zhang, and H. Yang, Myasthenia Gravis Accompanied by Premature Ovarian Failure and Aggravation by Estrogen, Internal Medicine, vol.49, issue.6, pp.611-613, 2010.
DOI : 10.2169/internalmedicine.49.2737

URL : https://www.jstage.jst.go.jp/article/internalmedicine/49/6/49_6_611/_pdf

S. Dupont, Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes, Development, vol.127, pp.4277-4291, 2000.

A. Gradolatto, Both Treg cells and Tconv cells are defective in the Myasthenia gravis thymus: Roles of IL-17 and TNF-??, Journal of Autoimmunity, vol.52, pp.53-63015, 2014.
DOI : 10.1016/j.jaut.2013.12.015