R. Forti and M. Henrard, Crops production in Agriculture, forestry and fishery statistics, pp.81-90, 2016.

J. L. Hatfield and J. H. Prueger, Temperature extremes: effect on plant growth and development. Weather Clim, Extr, vol.10, pp.4-10, 2015.
DOI : 10.1016/j.wace.2015.08.001

URL : http://doi.org/10.1016/j.wace.2015.08.001

D. B. Lobell and G. P. Asner, Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields, Science, vol.299, issue.5609, p.1032, 2003.
DOI : 10.1126/science.1077838

J. A. Greaves, Improving suboptimal temperature tolerance in maize- the search for variation, Journal of Experimental Botany, vol.47, issue.3, pp.307-323, 1996.
DOI : 10.1093/jxb/47.3.307

M. Bindi and J. Olesen, The responses of agriculture in Europe to climate change, Regional Environmental Change, vol.160, issue.2, pp.151-158, 2011.
DOI : 10.1016/S1090-0233(00)90470-2

F. Moore and D. Lobell, Adaptation potential of European agriculture in response to climate change, Nature Climate Change, vol.19, issue.7, pp.610-614, 2014.
DOI : 10.1175/2009BAMS2607.1

L. Elsgaard, Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe, Food Additives & Contaminants: Part A, vol.2, issue.10, pp.1514-1526, 2012.
DOI : 10.3354/cr007253

P. Falloon and R. A. Betts, Climate impacts on European agriculture and water management in the context of adaptation and mitigation???The importance of an integrated approach, Science of The Total Environment, vol.408, issue.23, pp.5667-5687, 2010.
DOI : 10.1016/j.scitotenv.2009.05.002

H. Z. Cross and M. S. Zuber, Prediction of Flowering Dates in Maize Based on Different Methods of Estimating Thermal Units1, Agronomy Journal, vol.64, issue.3, pp.351-355, 1972.
DOI : 10.2134/agronj1972.00021962006400030029x

J. Bewley, Seed Germination and Dormancy, THE PLANT CELL ONLINE, vol.9, issue.7, pp.1055-1066, 1997.
DOI : 10.1105/tpc.9.7.1055

K. Weitbrecht, K. Müller, and G. Leubner-metzger, First off the mark: early seed germination, Journal of Experimental Botany, vol.62, issue.10, pp.3289-3309, 2011.
DOI : 10.1093/jxb/err030

URL : https://academic.oup.com/jxb/article-pdf/62/10/3289/16928032/err030.pdf

R. H. Ellis, Seed and seedling vigour in relation to crop growth and yield, Plant Growth Regulation, vol.21, issue.3, pp.249-255, 1992.
DOI : 10.1007/BF00024563

J. You and Z. Chan, ROS Regulation During Abiotic Stress Responses in Crop Plants, Frontiers in Plant Science, vol.64, issue.e57472, p.1092, 2015.
DOI : 10.1093/jxb/ert215

URL : http://doi.org/10.3389/fpls.2015.01092

T. K. Prasad, M. D. Anderson, B. A. Martin, and C. Stewart, Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide, THE PLANT CELL ONLINE, vol.6, issue.1, pp.65-74, 1994.
DOI : 10.1105/tpc.6.1.65

T. K. Prasad, Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities, The Plant Journal, vol.10, issue.6, pp.1017-1026, 1996.
DOI : 10.1046/j.1365-313X.1996.10061017.x

R. G. Upchurch, Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress, Biotechnology Letters, vol.18, issue.6, pp.967-977, 2008.
DOI : 10.1104/pp.106.4.1609

J. P. Williams, M. U. Khan, K. Mitchell, and G. Johnson, The Effect of Temperature on the Level and Biosynthesis of Unsaturated Fatty Acids in Diacylglycerols of Brassica napus Leaves, PLANT PHYSIOLOGY, vol.87, issue.4, pp.904-910, 1988.
DOI : 10.1104/pp.87.4.904

G. Zheng, B. Tian, F. Zhang, F. Tao, and W. Li, Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels, Plant, Cell & Environment, vol.21, issue.9, pp.1431-1442, 2011.
DOI : 10.1657/1523-0430(07-009)[YANG]2.0.CO;2

A. Burgos, Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light, The Plant Journal, vol.36, issue.4, pp.656-668, 2011.
DOI : 10.1046/j.1365-313X.2003.01918.x

F. A. Hoekstra, J. H. Crowe, and L. M. Crowe, Germination and ion leakage are linked with phase transitions: of membrane lipids during imbibition of Typha latifolia pollen, Physiologia Plantarum, vol.645, issue.1, pp.29-34, 1992.
DOI : 10.1007/BF00384979

P. Kachroo, J. Shanklin, J. Shah, E. J. Whittle, and D. F. Klessig, A fatty acid desaturase modulates the activation of defense signaling pathways in plants, Proc. Natl. Acad. Sci. USA 98, pp.9448-9453, 2001.
DOI : 10.1002/ijc.2910570310

D. Rainteau, Acyl Chains of Phospholipase D Transphosphatidylation Products in Arabidopsis Cells: A Study Using Multiple Reaction Monitoring Mass Spectrometry, PLoS ONE, vol.29, issue.3123, p.41985, 2012.
DOI : 10.1371/journal.pone.0041985.s009

URL : https://hal.archives-ouvertes.fr/hal-00723340

N. Djafi, Multiple reaction monitoring mass spectrometry is a powerful tool to study glycerolipid composition in plants with different level of desaturase activity, Plant Signaling & Behavior, vol.258, issue.5, p.24118, 2013.
DOI : 10.1021/jf00081a017

URL : https://hal.archives-ouvertes.fr/hal-00801065

F. Tellier, A. Maia-grondard, I. Schmitz-afonso, and J. D. Faure, Comparative plant sphingolipidomic reveals specific lipids in seeds and oil, Phytochemistry, vol.103, pp.50-58, 2014.
DOI : 10.1016/j.phytochem.2014.03.023

URL : https://hal.archives-ouvertes.fr/hal-01024458

X. R. Zhou, Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA, Frontiers in Plant Science, vol.587, issue.49, p.419, 2014.
DOI : 10.1016/j.febslet.2013.06.003

I. Kranner, F. V. Minibayeva, R. P. Beckett, and C. E. Seal, What is stress? Concepts, definitions and applications in seed science, New Phytologist, vol.156, issue.3, pp.655-673, 2010.
DOI : 10.1042/bj1660033

P. L. Keeling and J. A. Greaves, Effects of temperature stresses on corn -opportunities for breeding and biotechnology in, Proceedings of the 45th Annual Corn and Sorghum Research Conference, pp.29-42, 1990.

V. Sege?a, ?????????????????? ???????????????????????????????????? ???????????????? (Zea mays L.) ?????? ??????????????????????. ?????????????? ???????????????? ???? ???????????? ?????????????????????? ?????? ???????????????????????? ?? ???????????????????????????????????? ?????? ??????????????????????, Biologia Plantarum, vol.6, issue.XXXII, pp.189-197, 1964.
DOI : 10.2134/agronj1943.00021962003500010006x

N. Esim and O. Atici, Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul, pp.29-38, 2013.

Y. Wang, Influence of Lanthanides on the Antioxidative Defense System in Maize Seedlings Under Cold Stress, Biological Trace Element Research, vol.461, issue.462, pp.819-830, 2010.
DOI : 10.1016/S0166-1280(98)00461-8

H. Abdelgawad, High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs, Frontiers in Plant Science, vol.18, issue.e0140, p.276, 2016.
DOI : 10.1007/s10811-006-9048-4

S. A. Anjum, Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress, Environmental Science and Pollution Research, vol.55, issue.12, pp.11864-11875, 2016.
DOI : 10.1021/jf062971p

C. Bailly, A. Benamar, F. Corbineau, and D. Côme, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging, Physiologia Plantarum, vol.14, issue.1, pp.104-110, 1996.
DOI : 10.1007/978-94-009-5685-8

V. B. Bowman, V. Huang, and A. H. Huang, Expression of lipid body protein gene during maize seed development. Spatial, temporal, and hormonal regulation, J. Biol. Chem, vol.263, pp.1476-1481, 1988.

S. K. Yadav, Cold stress tolerance mechanisms in plants. A review, Agronomy for Sustainable Development, vol.102, issue.3, pp.515-527, 2010.
DOI : 10.1073/pnas.0503960102

URL : https://hal.archives-ouvertes.fr/hal-00886535

E. W. Simon and R. M. Harun, Leakage during Seed Imbibition, Journal of Experimental Botany, vol.23, issue.4, pp.1076-1085, 1972.
DOI : 10.1093/jxb/23.4.1076

J. B. Murphy and T. L. Noland, Temperature Effects on Seed Imbibition and Leakage Mediated by Viscosity and Membranes, PLANT PHYSIOLOGY, vol.69, issue.2, pp.428-431, 1982.
DOI : 10.1104/pp.69.2.428

URL : http://www.plantphysiol.org/content/plantphysiol/69/2/428.full.pdf

I. Marbach and A. M. Mayer, The Effect of Temperature Change on Leakage from Pea Seeds, Journal of Experimental Botany, vol.36, issue.3, pp.353-358, 1985.
DOI : 10.1093/jxb/36.3.353

A. C. Leopold, Temperature Effects on Soybean Imbibition and Leakage, PLANT PHYSIOLOGY, vol.65, issue.6, pp.1096-1098, 1980.
DOI : 10.1104/pp.65.6.1096

URL : http://www.plantphysiol.org/content/plantphysiol/65/6/1096.full.pdf

S. Harrabi, S. Boukhchina, H. Kallel, and P. M. Mayer, Glycerophospholipid and triacylglycerol distribution in corn kernels (Zea mays L.), Journal of Cereal Science, vol.51, issue.1, pp.1-6, 2010.
DOI : 10.1016/j.jcs.2009.04.013

S. E. Vega, A. H. Rio, J. B. Bamberg, and J. P. Palta, Evidence for the up-regulation of stearoyl-ACP (??9) desaturase gene expression during cold acclimation, American Journal of Potato Research, vol.347, issue.2, pp.125-135, 2004.
DOI : 10.1104/pp.109.1.15

J. Shi, A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa, Molecular Breeding, vol.47, issue.6, pp.743-757, 2012.
DOI : 10.1016/j.plaphy.2008.12.024

R. P. Cruz, Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice, Brazilian Journal of Plant Physiology, vol.66, issue.3, pp.199-207, 2010.
DOI : 10.1006/pest.1999.2467

G. Zheng, L. Li, and W. Li, 8886 | DOI:10.1038/s41598-017-08904-z 46 Glycerolipidome responses to freezing-and chilling-induced injuries: examples in Arabidopsis and rice, BMC Plant Biol, vol.7, issue.16, p.70, 2016.

M. Kates, E. L. Pugh, and G. Ferrante, Regulation of membrane fluidity by lipid desaturases in Membrane Fluidity, pp.379-395, 1984.

C. D. Stubbs and . Smith, The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.779, issue.1, pp.89-137, 1984.
DOI : 10.1016/0304-4157(84)90005-4

N. Murata and D. A. Los, Membrane Fluidity and Temperature Perception, Plant Physiology, vol.115, issue.3, pp.875-879, 1997.
DOI : 10.1104/pp.115.3.875

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC158550/pdf

J. Okuley, Arabidopsis FAD2 Gene Encodes the Enzyme That Is Essential for Polyunsaturated Lipid Synthesis, THE PLANT CELL ONLINE, vol.6, issue.1, pp.147-158, 1994.
DOI : 10.1105/tpc.6.1.147

E. P. Heppard, A. J. Kinney, K. L. Stecca, and G. H. Miao, Developmental and Growth Temperature Regulation of Two Different Microsomal [omega]-6 Desaturase Genes in Soybeans, Plant Physiology, vol.110, issue.1, pp.311-319, 1996.
DOI : 10.1104/pp.110.1.311

M. Matteucci, Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness, Journal of Experimental Botany, vol.62, issue.10, pp.3403-3420, 2011.
DOI : 10.1093/jxb/err013

A. Kargiotidou, D. Deli, D. Galanopoulou, A. Tsaftaris, and T. Farmaki, Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum), Journal of Experimental Botany, vol.59, issue.8, pp.2043-2056, 2008.
DOI : 10.1093/jxb/ern065

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2413273

L. Yang, J. Ye, W. D. Guo, C. C. Wang, and H. Hu, Differences in cold tolerance and expression of two fatty acid desaturase genes in the leaves between fingered citron and its dwarf mutant, Trees, vol.33, issue.5, pp.1193-1201, 2012.
DOI : 10.1007/s10529-010-0432-4

C. J. Dong, N. Cao, Z. G. Zhang, and Q. M. Shang, Characterization of the Fatty Acid Desaturase Genes in Cucumber: Structure, Phylogeny, and Expression Patterns, PLOS ONE, vol.330, issue.3, p.149917, 2016.
DOI : 10.1371/journal.pone.0149917.s008

Z. T. Ding, CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.), Genetics and Molecular Research, vol.15, issue.1, p.15017512, 2016.
DOI : 10.4238/gmr.15017512

G. Tasseva, J. D. De-virville, C. Cantrel, F. Moreau, and A. Zachowski, Changes in the endoplasmic reticulum lipid properties in response to low temperature in Brassica napus, Plant Physiology and Biochemistry, vol.42, issue.10, pp.811-822, 2004.
DOI : 10.1016/j.plaphy.2004.10.001

D. An, J. Yang, and P. Zhang, Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress, BMC Genomics, vol.13, issue.1, p.64, 2012.
DOI : 10.1093/bioinformatics/19.2.185

D. Palma and M. D. , Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants, Molecular Breeding, vol.11, issue.1, pp.15-26, 2008.
DOI : 10.1104/pp.103.3.793

B. R. Ni and K. J. Bradford, Quantitative Models Characterizing Seed Germination Responses to Abscisic Acid and Osmoticum, PLANT PHYSIOLOGY, vol.98, issue.3, pp.1057-1068, 1992.
DOI : 10.1104/pp.98.3.1057

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080308/pdf

R. L. Heath and L. Packer, Photoperoxidation in isolated chloroplasts, Archives of Biochemistry and Biophysics, vol.125, issue.1, pp.189-198, 1968.
DOI : 10.1016/0003-9861(68)90654-1

T. C. Verwoerd, B. M. Dekker, and A. Hoekema, A small-scale procedure for the rapid isolation of plant RNAs, Nucleic Acids Research, vol.17, issue.6, p.2362, 1989.
DOI : 10.1093/nar/17.6.2362

J. Leymarie, Role of Reactive Oxygen Species in the Regulation of Arabidopsis Seed Dormancy, Plant and Cell Physiology, vol.53, issue.1, pp.96-106, 2012.
DOI : 10.1093/pcp/pcr129

URL : https://hal.archives-ouvertes.fr/hal-01560082

J. Hellemans, G. Mortier, A. De-paepe, F. Speleman, and J. Vandesompele, QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data, Genome Biology, vol.8, issue.2, p.19, 2007.
DOI : 10.1186/gb-2007-8-2-r19

F. Lin, Genome-wide identification of housekeeping genes in maize, Plant Molecular Biology, vol.9, issue.4-5, pp.543-554, 2014.
DOI : 10.1186/1471-2164-9-172

V. Mikkilineni and T. R. Rocheford, Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize, Theoretical and Applied Genetics, vol.40, issue.7, pp.1326-1332, 2003.
DOI : 10.2135/cropsci1984.0011183X002400060025x

C. Soderlund, Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs, PLoS Genetics, vol.8, issue.11, p.1000740, 2009.
DOI : 10.1371/journal.pgen.1000740.s003

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45