L. Blake, A. E. Johnston, P. R. Poulton, and K. W. Goulding, Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods, Plant and Soil, vol.254, issue.2, pp.245-261, 2003.
DOI : 10.1023/A:1025544817872

V. Brovkin and D. Goll, Land unlikely to become large carbon source, Nature Geoscience, vol.8, issue.12, p.893, 2015.
DOI : 10.5194/bg-8-2907-2011

URL : http://ddd.uab.cat/pub/artpub/2015/143133/natgeo_a2015m12v8n12p893.pdf

C. Buendía, S. Arens, T. Hickler, S. I. Higgins, P. Porada et al., On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales, Biogeosciences, vol.11, issue.13, pp.3661-3683, 2014.
DOI : 10.5194/bg-11-3661-2014

J. Q. Chambers and W. L. Silver, Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change, Philos, Trans. R. Soc. B, pp.359-463, 1443.

M. Cherif and M. Loreau, When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis, Proceedings of the Royal Society B: Biological Sciences, vol.138, issue.1, pp.276-487, 1656.
DOI : 10.1007/s00442-003-1391-4

C. C. Cleveland, B. Z. Houlton, W. K. Smith, A. R. Marklein, S. C. Reed et al., Patterns of new versus recycled primary production in the terrestrial biosphere, Proceedings of the National Academy of Sciences, vol.89, issue.8, pp.733-12737, 2013.
DOI : 10.1890/07-0850.1

B. Colomb, P. Debaeke, C. Jouany, and J. Nolot, Phosphorus management in low input stockless cropping systems: Crop and soil responses to contrasting P regimes in a 36-year experiment in southern France, European Journal of Agronomy, vol.26, issue.2, pp.154-165, 2007.
DOI : 10.1016/j.eja.2006.09.004

L. M. Condron and S. Newman, Revisiting the fundamentals of phosphorus fractionation of sediments and soils, Journal of Soils and Sediments, vol.49, issue.5, pp.830-840, 2011.
DOI : 10.1046/j.1365-2389.1998.4930477.x

A. F. Cross and W. H. Schlesinger, A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems, Geoderma, vol.64, issue.3-4, pp.64-197, 1995.
DOI : 10.1016/0016-7061(94)00023-4

E. A. Davidson and I. A. Janssens, Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, vol.63, issue.7081, pp.440-165, 2006.
DOI : 10.1038/nature04514

S. Doetterl, A. Stevens, J. Six, R. Merckx, K. Van-oost et al., Soil carbon storage controlled by interactions between geochemistry and climate, Soil carbon storage controlled by interactions between geochemistry and climate, pp.780-783, 2015.
DOI : 10.1016/j.soilbio.2011.04.012

URL : http://repositorio.uchile.cl/bitstream/2250/136056/1/Soil-carbon-storage.pdf

J. J. Elser, M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole et al., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecology Letters, vol.11, issue.12, pp.1135-1142, 2007.
DOI : 10.1126/science.289.5480.759

J. Elser, W. Fagan, A. Kerkhoff, N. Swenson, and B. Enquist, Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change, New Phytologist, vol.428, issue.3, pp.593-608, 2010.
DOI : 10.1007/978-1-4615-2812-8_10

D. S. Goll, N. Moosdorf, J. Hartmann, and V. Brovkin, Climate-driven changes in chemical weathering and associated phosphorus release since 1850: Implications for the land carbon balance, Geophysical Research Letters, vol.63, issue.19, pp.41-3553, 2014.
DOI : 10.1016/S0016-7037(99)00250-1

D. Goll, V. Brovkin, B. Parida, C. H. Reick, J. Kattge et al., Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, issue.99, pp.3547-3569, 2012.

S. Gower, O. Krankina, R. Olson, M. Apps, S. Linder et al., NET PRIMARY PRODUCTION AND CARBON ALLOCATION PATTERNS OF BOREAL FOREST ECOSYSTEMS, Ecological Applications, vol.11, issue.5, pp.1395-1411, 2001.
DOI : 10.1139/x83-106

B. Guenet, K. Lenhart, J. Leloup, S. Giusti-miller, V. Pouteau et al., The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities, Geoderma, vol.170, pp.331-336, 2012.
DOI : 10.1016/j.geoderma.2011.12.002

F. Guo and R. S. Yost, Quantifying the Available Soil Phosphorus Pool with the Acid Ammonium Oxalate Method, Soil Science Society of America Journal, vol.63, issue.3, pp.651-656, 1999.
DOI : 10.2136/sssaj1999.03615995006300030031x

J. Hartmann, N. Moosdorf, R. Lauerwald, M. Hinderer, and A. J. West, Global chemical weathering and associated P-release ??? The role of lithology, temperature and soil properties, Chemical Geology, vol.363, pp.145-163, 2014.
DOI : 10.1016/j.chemgeo.2013.10.025

S. Hasegawa, C. A. Macdonald, and S. A. Power, woodland, Global Change Biology, vol.41, issue.4, pp.1628-1643, 2015.
DOI : 10.1002/2013GL058352

S. Hättenschwiler and P. Gasser, Soil animals alter plant litter diversity effects on decomposition, Proceedings of the National Academy of Sciences, vol.86, issue.3, pp.1519-1524, 2005.
DOI : 10.2307/3546566

M. Hedley, J. Stewart, and B. Chauhan, Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations1, Soil Science Society of America Journal, vol.46, issue.5, pp.970-976, 1982.
DOI : 10.2136/sssaj1982.03615995004600050017x

C. Hermans, J. P. Hammond, P. J. White, and N. Verbruggen, How do plants respond to nutrient shortage by biomass allocation?, Trends in Plant Science, vol.11, issue.12, pp.610-617, 2006.
DOI : 10.1016/j.tplants.2006.10.007

URL : https://dipot.ulb.ac.be/dspace/bitstream/2013/98485/1/How do plants respond to nutrient shortage.pdf

P. Hinsinger, Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review, Plant and Soil, vol.237, issue.2, pp.173-195, 2001.
DOI : 10.1023/A:1013351617532

P. Hinsinger, L. Herrmann, D. Lesueur, A. Robin, J. Trap et al., Impact of roots, microorganisms and microfauna on the fate of soil phosphorus in the rhizosphere, Annual Plant Reviews, pp.375-407, 2015.
DOI : 10.1093/pcp/pci094

A. H. Johnson, J. Frizano, and D. R. Vann, Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure, Oecologia, vol.147, issue.4, pp.487-499, 2003.
DOI : 10.1007/BF00029076

C. Jones, Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways, Journal of Climate, vol.26, issue.13, pp.4398-4413, 2013.
DOI : 10.1175/JCLI-D-12-00554.1

J. Kattge, TRY - a global database of plant traits, Global Change Biology, vol.24, issue.9, pp.2905-2935, 2011.
DOI : 10.1029/2011GL047182

URL : https://hal.archives-ouvertes.fr/hal-00639535

J. M. Knops, D. A. Wedin, and S. Naeem, The Role of Litter Quality Feedbacks in Terrestrial Nitrogen and Phosphorus Cycling~!2009-12-07~!2010-01-22~!2010-03-16~!, The Open Ecology Journal, vol.3, issue.1, pp.14-25, 2010.
DOI : 10.2174/1874213001003010014

R. Lal, Promise and limitations of soils to minimize climate change, Journal of Soil and Water Conservation, vol.63, issue.4, pp.113-118, 2008.
DOI : 10.2489/jswc.63.4.113A

H. Lambers, P. M. Finnegan, E. Laliberté, S. J. Pearse, M. H. Ryan et al., Phosphorus Nutrition of Proteaceae in Severely Phosphorus-Impoverished Soils: Are There Lessons To Be Learned for Future Crops?, PLANT PHYSIOLOGY, vol.156, issue.3, pp.1058-1066, 2011.
DOI : 10.1104/pp.111.174318

L. Liu, P. Gundersen, T. Zhang, and J. Mo, Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China, Soil Biology and Biochemistry, vol.44, issue.1, pp.31-38, 1002.
DOI : 10.1016/j.soilbio.2011.08.017

N. Mahowald, T. D. Jickells, A. R. Baker, P. Artaxo, C. R. Benitez-nelson et al., Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts, Global Biogeochemical Cycles, vol.108, issue.D14, p.4026, 2008.
DOI : 10.1029/2002JD002775

M. E. Mcgroddy, T. Daufresne, and L. O. Hedin, SCALING OF C:N:P STOICHIOMETRY IN FORESTS WORLDWIDE: IMPLICATIONS OF TERRESTRIAL REDFIELD-TYPE RATIOS, Ecology, vol.85, issue.9, pp.85-2390, 2004.
DOI : 10.1126/science.276.5309.122

D. L. Moorhead and R. L. Sinsabaugh, A THEORETICAL MODEL OF LITTER DECAY AND MICROBIAL INTERACTION, Ecological Monographs, vol.76, issue.2, pp.151-174, 2006.
DOI : 10.2307/1940104

E. Newman, Phosphorus Inputs to Terrestrial Ecosystems, The Journal of Ecology, vol.83, issue.4, pp.713-726, 1995.
DOI : 10.2307/2261638

Y. F. Niu, R. S. Chai, G. L. Jin, H. Wang, C. X. Tang et al., Responses of root architecture development to low phosphorus availability: a review, Annals of Botany, vol.112, issue.2, pp.391-408, 2013.
DOI : 10.1093/aob/mcs285

R. J. Norby, M. G. De-kauwe, T. F. Domingues, R. A. Duursma, D. S. Ellsworth et al., enrichment (FACE) experiments, New Phytologist, vol.202, issue.1, pp.17-28, 2016.
DOI : 10.1111/nph.12697

W. J. Parton, J. Neff, and P. M. Vitousek, Chapter 15: Modelling phosphorus, carbon and nitrogen dynamics in terrestrial ecosystems, Organic Phosphorus in the Environment, pp.325-348, 2005.
DOI : 10.1079/9780851998220.0325

J. Peñuelas, B. Poulter, J. Sardans, P. Ciais, M. Van-der-velde et al., Human-induced nitrogen???phosphorus imbalances alter natural and managed ecosystems across the globe, Nature Communications, vol.190, 2013.
DOI : 10.1016/S0009-2541(02)00108-0

H. Poorter, K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot et al., Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control, New Phytologist, vol.36, issue.1, pp.30-50, 2012.
DOI : 10.1071/FP08046

S. C. Reed, A. R. Townsend, E. A. Davidson, and C. C. Cleveland, Stoichiometric patterns in foliar nutrient resorption across multiple scales, New Phytologist, vol.18, issue.169, pp.173-180, 2012.
DOI : 10.1111/j.1466-8238.2008.00425.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2012.04249.x/pdf

S. C. Reed, X. Yang, and P. E. Thornton, Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor, New Phytologist, vol.202, issue.2, pp.324-329, 2015.
DOI : 10.1111/nph.12697

URL : http://onlinelibrary.wiley.com/doi/10.1111/nph.13521/pdf

P. B. Reich and J. Oleksyn, Global patterns of plant leaf N and P in relation to temperature and latitude, Proceedings of the National Academy of Sciences, vol.33, issue.7, pp.1-11006, 2004.
DOI : 10.2307/2404783

D. P. Schachtman, R. J. Reid, and S. M. Ayling, Phosphorus Uptake by Plants: From Soil to Cell, Plant Physiology, vol.116, issue.2, pp.447-453, 1998.
DOI : 10.1104/pp.116.2.447

URL : http://www.plantphysiol.org/content/plantphysiol/116/2/447.full.pdf

S. A. Sistla and J. P. Schimel, Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change, New Phytologist, vol.12, issue.1, pp.68-78, 2012.
DOI : 10.1111/j.1365-2486.2005.01086.x

K. E. Taylor, R. J. Stouffer, and G. A. , An Overview of CMIP5 and the Experiment Design, Bulletin of the American Meteorological Society, vol.93, issue.4, pp.485-498, 2012.
DOI : 10.1175/BAMS-D-11-00094.1

C. P. Vance, C. Uhde-stone, and D. L. Allan, Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, New Phytologist, vol.47, issue.3, pp.423-447, 2003.
DOI : 10.1104/pp.125.3.1459

P. M. Vitousek, S. Porder, B. Z. Houlton, and O. A. Chadwick, Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen???phosphorus interactions, Ecological Applications, vol.31, issue.1, pp.5-15, 2010.
DOI : 10.1038/nature03950

T. W. Walker and J. K. Syers, The fate of phosphorus during pedogenesis, Geoderma, vol.15, issue.1, pp.1-190016, 1976.
DOI : 10.1016/0016-7061(76)90066-5

R. Wang, Y. Balkanski, O. Boucher, P. Ciais, J. Peñuelas et al., Significant contribution of combustion-related emissions to the atmospheric phosphorus budget, Nature Geoscience, vol.102, issue.1, pp.48-54, 2015.
DOI : 10.1007/s10584-011-0154-1

Y. Wang, R. Law, and B. Pak, A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, vol.7, issue.7, pp.2261-2282, 2010.
DOI : 10.5194/bg-7-2261-2010

J. T. Weedon, W. K. Cornwell, J. H. Cornelissen, A. E. Zanne, C. Wirth et al., Global meta-analysis of wood decomposition rates: a role for trait variation among tree species?, Ecology Letters, vol.25, issue.1, pp.45-56, 2009.
DOI : 10.1007/s11104-007-9437-8

P. J. White and J. P. Hammond, Phosphorus nutrition of terrestrial plants, in The Ecophysiology of Plant-Phosphorus Interactions, pp.51-81, 2008.

W. R. Wieder, C. C. Cleveland, W. K. Smith, and K. Todd-brown, Future productivity and carbon storage limited by terrestrial nutrient availability, Nature Geoscience, vol.514, issue.6, pp.441-444, 2015.
DOI : 10.1073/pnas.1103910108

I. J. Wright, P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch et al., The worldwide leaf economics spectrum, Nature, vol.428, issue.6985, pp.428-821, 2004.
DOI : 10.1038/nature02403

X. F. Xu, P. E. Thornton, and W. M. Post, A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, Global Ecology and Biogeography, vol.78, issue.6, pp.737-749, 2013.
DOI : 10.1016/j.jaridenv.2011.11.012

X. Yang and W. M. Post, Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method, Biogeosciences, vol.8, issue.10, pp.2907-2916, 2011.
DOI : 10.5194/bg-8-2907-2011-supplement

X. Yang, W. M. Post, P. E. Thornton, and A. Jain, The distribution of soil phosphorus for global biogeochemical modeling, Biogeosciences, vol.10, issue.4, pp.2525-2537, 2013.
DOI : 10.5194/bg-10-2525-2013-supplement

X. Yang, P. Thornton, D. Ricciuto, and W. Post, The role of phosphorus dynamics in tropical forests?A modeling study using CLM-CNP, Biogeosciences, issue.6, pp.11-1667, 2014.

Z. Yuan and H. Y. Chen, Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes, Nature Climate Change, vol.485, issue.5, pp.465-469, 2015.
DOI : 10.1111/j.1365-2486.2012.02745.x

S. Zaehle, C. D. Jones, B. Houlton, J. Lamarque, and E. Robertson, Nitrogen Availability Reduces CMIP5 Projections of Twenty-First-Century Land Carbon Uptake*, Journal of Climate, vol.28, issue.6, pp.2494-2511, 2015.
DOI : 10.1175/JCLI-D-13-00776.s1

Q. Zhang, Y. Wang, A. Pitman, and Y. Dai, Limitations of nitrogen and phosphorous on the terrestrial carbon uptake in the 20th century, L22701, 2011.
DOI : 10.1029/2009GB003522

Q. Zhang, Y. P. Wang, R. J. Matear, A. J. Pitman, and Y. J. Dai, emissions, Geophysical Research Letters, vol.4, issue.7, pp.632-637, 2014.
DOI : 10.5194/esd-4-1-2013

URL : https://hal.archives-ouvertes.fr/insu-01372931