R. Brunkhorst, R. Vutukuri, and W. Pfeilschifter, Fingolimod for the treatment of neurological diseases-state of play and future perspectives, Front Cell Neurosci, vol.8, p.283, 2014.

B. Davletov and C. Montecucco, Lipid function at synapses, Current Opinion in Neurobiology, vol.20, issue.5, pp.543-549, 2010.
DOI : 10.1016/j.conb.2010.06.008

Y. A. Hannun and L. M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nature Reviews Molecular Cell Biology, vol.449, issue.2, pp.139-150, 2008.
DOI : 10.1016/j.bbalip.2004.01.006

X. He, Y. Huang, B. Li, C. X. Gong, and E. H. Schuchman, Deregulation of sphingolipid metabolism in Alzheimer's disease, Neurobiology of Aging, vol.31, issue.3, pp.398-408, 2010.
DOI : 10.1016/j.neurobiolaging.2008.05.010

O. Connor and P. , Oral fingolimod (FTY720) in multiple sclerosis: Two-year results of a phase II extension study, Neurology, vol.72, issue.1, pp.73-79, 2009.
DOI : 10.1212/01.wnl.0000338569.32367.3d

V. Brinkmann, Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis, Nature Reviews Drug Discovery, vol.68, issue.11, pp.883-897, 2010.
DOI : 10.1212/WNL.43.4.662

K. Chiba, FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing, J Immunol, vol.160, pp.5037-5044, 1998.

D. Marsolais and H. Rosen, Chemical modulators of sphingosine-1-phosphate receptors as barrier-oriented therapeutic molecules, Nature Reviews Drug Discovery, vol.299, issue.4, pp.297-307, 2009.
DOI : 10.1016/S1388-1981(02)00132-4

M. Stenovec, S. Trkov, M. Kreft, and R. Zorec, Alterations of calcium homoeostasis in cultured rat astrocytes evoked by bioactive sphingolipids, Acta Physiologica, vol.6, issue.1, pp.49-61, 2014.
DOI : 10.1038/nn980

C. Wu, Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation, Journal of Neuroinflammation, vol.621, issue.4, p.41, 2013.
DOI : 10.1016/0006-8993(93)90111-Y

V. T. Cruz and J. Fonseca, Central effects of fingolimod, Rev Neurol, vol.59, pp.121-128, 2014.

C. A. Foster, Brain Penetration of the Oral Immunomodulatory Drug FTY720 and Its Phosphorylation in the Central Nervous System during Experimental Autoimmune Encephalomyelitis: Consequences for Mode of Action in Multiple Sclerosis, Journal of Pharmacology and Experimental Therapeutics, vol.323, issue.2, pp.469-475, 2007.
DOI : 10.1124/jpet.107.127183

B. Czech, The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia, Biochemical and Biophysical Research Communications, vol.389, issue.2, pp.251-256, 2009.
DOI : 10.1016/j.bbrc.2009.08.142

R. Deogracias, Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome, Proceedings of the National Academy of Sciences, vol.346, issue.1, pp.14230-14235, 2012.
DOI : 10.1007/s00441-011-1233-3

A. Ruiz, Testing A?? toxicity on primary CNS cultures using drug-screening microfluidic chips, Lab Chip, vol.50, issue.3, pp.2860-2866, 2014.
DOI : 10.1007/s12031-013-9979-6

N. Takasugi, FTY720/Fingolimod, a Sphingosine Analogue, Reduces Amyloid-?? Production in Neurons, PLoS ONE, vol.18, issue.5, p.64050, 2013.
DOI : 10.1371/journal.pone.0064050.s003

J. Vargas-medrano, Novel FTY720-Based Compounds Stimulate Neurotrophin Expression and Phosphatase Activity in Dopaminergic Cells, ACS Medicinal Chemistry Letters, vol.5, issue.7, pp.782-786, 2014.
DOI : 10.1021/ml500128g

Y. Wei, Fingolimod provides long-term protection in rodent models of cerebral ischemia, Annals of Neurology, vol.58, issue.1, pp.119-129, 2011.
DOI : 10.1002/ana.20602

B. Balatoni, FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis, Brain Research Bulletin, vol.74, issue.5, pp.307-316, 2007.
DOI : 10.1016/j.brainresbull.2007.06.023

R. Cipriani, J. C. Chara, A. Rodríguez-antigüedad, and C. Matute, FTY720 attenuates excitotoxicity and neuroinflammation, Journal of Neuroinflammation, vol.4, issue.Suppl 5, p.86, 2015.
DOI : 10.1038/cddis.2013.54

S. Rossi, Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis, British Journal of Pharmacology, vol.90, issue.1, pp.861-869, 2012.
DOI : 10.1038/labinvest.2010.6

N. C. Hait, Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory, Nature Neuroscience, vol.460, issue.7, pp.971-980, 2014.
DOI : 10.1093/nar/gkr968

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256678

F. Darios, Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis, Neuron, vol.62, issue.5, pp.683-694, 2009.
DOI : 10.1016/j.neuron.2009.04.024

URL : http://doi.org/10.1016/j.neuron.2009.04.024

A. Fla?ker, J. Jorga?evski, A. I. Calejo, M. Kreft, and R. Zorec, Vesicle size determines unitary exocytic properties and their sensitivity to sphingosine, Molecular and Cellular Endocrinology, vol.376, issue.1-2, pp.136-147, 2013.
DOI : 10.1016/j.mce.2013.06.012

V. García-martínez, Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells, Neuroscience, vol.295, pp.117-125, 2015.
DOI : 10.1016/j.neuroscience.2015.03.036

C. Rickman, F. A. Meunier, T. Binz, and B. Davletov, High Affinity Interaction of Syntaxin and SNAP-25 on the Plasma Membrane Is Abolished by Botulinum Toxin E, Journal of Biological Chemistry, vol.269, issue.1, pp.644-651, 2004.
DOI : 10.1007/s002490050188

K. Hu, C. Rickman, J. Carroll, and B. Davletov, A common mechanism for the regulation of vesicular SNAREs on phospholipid membranes, Biochemical Journal, vol.377, issue.3, pp.781-785, 2004.
DOI : 10.1042/bj20031164

M. Holt, D. Riedel, A. Stein, C. Schuette, and R. Jahn, Synaptic Vesicles Are Constitutively Active Fusion Machines that Function Independently of Ca2+, Current Biology, vol.18, issue.10, pp.715-722, 2008.
DOI : 10.1016/j.cub.2008.04.069

E. Connell, Mechanism of arachidonic acid action on syntaxin???Munc18, EMBO reports, vol.100, issue.4, pp.414-419, 2007.
DOI : 10.1371/journal.pbio.0040330

B. A. Davletov, Vesicle exocytosis stimulated by ??-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+, The EMBO Journal, vol.17, issue.14, pp.3909-3920, 1998.
DOI : 10.1093/emboj/17.14.3909

M. Rupnik and R. Zorec, Intracellular CI? modulates Ca2+-induced exocytosis from rat melanotrophs through GTP-binding proteins, Pfl???gers Archiv European Journal of Physiology, vol.480, issue.1, pp.76-83, 1995.
DOI : 10.1007/BF00374379

B. Rituper, High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis, Nature Protocols, vol.80, issue.6, pp.1169-1183, 2013.
DOI : 10.1007/BF00582316

L. M. Gutierrez, A Peptide That Mimics the C-terminal Sequence of SNAP-25 Inhibits Secretory Vesicle Docking in Chromaffin Cells, Journal of Biological Chemistry, vol.269, issue.5, pp.2634-2639, 1997.
DOI : 10.1007/BF00711564

E. V. Mosharov and D. Sulzer, Analysis of exocytotic events recorded by amperometry, Nature Methods, vol.971, issue.9, pp.651-658, 2005.
DOI : 10.1021/ac00164a006

E. T. Kavalali, J. Klingauf, and R. W. Tsien, Activity-dependent regulation of synaptic clustering in a hippocampal culture system, Proceedings of the National Academy of Sciences, vol.281, issue.5376, pp.12893-12900, 1999.
DOI : 10.1126/science.281.5376.559

L. Svennerholm, M. T. Vanier, and J. Månsson, Krabbe disease: a galactosylsphingosine (psychosine) lipidosis, J Lipid Res, vol.21, pp.53-64, 1980.

E. Neher and A. Marty, Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells., Proceedings of the National Academy of Sciences, vol.79, issue.21, pp.6712-6716, 1982.
DOI : 10.1073/pnas.79.21.6712

S. Lipov?ek, F. Jan?ekovi?, G. Leitinger, and M. S. Rupnik, Rab3a ablation related changes in morphology of secretory vesicles in major endocrine pancreatic cells, pituitary melanotroph cells and adrenal gland chromaffin cells in mice, General and Comparative Endocrinology, vol.185, pp.67-79, 2013.
DOI : 10.1016/j.ygcen.2013.01.007

N. Vardjan, M. Stenovec, J. Jorgacevski, M. Kreft, and R. Zorec, 5958 | DOI:10.1038/s41598-017-05948-z 40 Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles, J Neurosci, vol.7, issue.27, pp.4737-4746, 2007.

R. M. Wightman, Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells., Proceedings of the National Academy of Sciences, vol.88, issue.23, pp.10754-10758, 1991.
DOI : 10.1073/pnas.88.23.10754

URL : http://www.pnas.org/content/88/23/10754.full.pdf

E. Connell, P. Scott, and B. Davletov, Real-time assay for monitoring membrane association of lipid-binding domains, Analytical Biochemistry, vol.377, issue.1, pp.83-91, 2008.
DOI : 10.1016/j.ab.2008.02.016

Y. D. Fragoso, Persistent Headache in Patients With Multiple Sclerosis Starting Treatment With Fingolimod, Headache: The Journal of Head and Face Pain, vol.13, issue.4, pp.578-579, 2015.
DOI : 10.1517/14740338.2014.920820

M. D. Ward, D. E. Jones, and M. D. Goldman, Overview and safety of fingolimod hydrochloride use in patients with multiple sclerosis, Expert Opinion on Drug Safety, vol.58, issue.7, pp.989-998, 2014.
DOI : 10.1634/stemcells.2006-0223

C. F. Brosnan and C. S. Raine, The astrocyte in multiple sclerosis revisited, Glia, vol.34, issue.Suppl 1, pp.453-465, 2013.
DOI : 10.1016/j.mcn.2006.09.008

S. Trkov, Fingolimod-A sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes, Glia, vol.6, issue.9, pp.1406-1416, 2012.
DOI : 10.1038/nn980

F. Safarian, B. Khallaghi, A. Ahmadiani, and L. Dargahi, Activation of S1P1 Receptor Regulates PI3K/Akt/FoxO3a Pathway in Response to Oxidative Stress in PC12 Cells, Journal of Molecular Neuroscience, vol.126, issue.1, pp.177-187, 2015.
DOI : 10.1016/j.molbrainres.2004.03.019

E. Kavalali, SNARE interactions in membrane trafficking: A perspective from mammalian central synapses, BioEssays, vol.97, issue.10, pp.926-936, 2002.
DOI : 10.1091/mbc.11.10.3629

V. García-martínez, Lipid Metabolites Enhance Secretion Acting on SNARE Microdomains and Altering the Extent and Kinetics of Single Release Events in Bovine Adrenal Chromaffin Cells, PLoS ONE, vol.10, issue.9, p.75845, 2013.
DOI : 10.1371/journal.pone.0075845.g007

M. Schröder, Abstract, Biological Chemistry, vol.396, issue.6-7, pp.795-802, 2015.
DOI : 10.1515/hsz-2014-0287

S. Jurado, LTP Requires a Unique Postsynaptic SNARE Fusion Machinery, Neuron, vol.77, issue.3, pp.542-558, 2013.
DOI : 10.1016/j.neuron.2012.11.029

K. L. Arendt, Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms, Neuron, vol.86, issue.2, pp.442-456, 2015.
DOI : 10.1016/j.neuron.2015.03.009