K. Labbé, A. Murley, and J. Nunnari, Determinants and Functions of Mitochondrial Behavior, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.357-391, 2014.
DOI : 10.1146/annurev-cellbio-101011-155756

B. Westermann, Mitochondrial fusion and fission in cell life and death, Nature Reviews Molecular Cell Biology, vol.264, issue.12, pp.872-884, 2010.
DOI : 10.1038/nrm1697

A. M. Bertholet, Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity, Neurobiology of Disease, vol.90, pp.3-19, 2016.
DOI : 10.1016/j.nbd.2015.10.011

N. Ishihara, Y. Eura, and K. Mihara, Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity, Journal of Cell Science, vol.117, issue.26, pp.6535-6546, 2004.
DOI : 10.1242/jcs.01565

URL : http://jcs.biologists.org/content/joces/117/26/6535.full.pdf

M. Rojo, F. Legros, D. Chateau, and A. Lombès, Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo, J. Cell. Sci, vol.115, pp.1663-1674, 2002.

O. M. De-brito and L. Scorrano, Mitofusin 2 tethers endoplasmic reticulum to mitochondria, Nature, vol.2, issue.7222, pp.605-610, 2008.
DOI : 10.1091/mbc.11.7.2445

R. Filadi, Mitofusin 2 ablation increases endoplasmic reticulum???mitochondria coupling, Proceedings of the National Academy of Sciences, vol.5, issue.9, pp.2174-2181, 2015.
DOI : 10.1126/science.1099793

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4418914

D. Naon, Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum???mitochondria tether, Proceedings of the National Academy of Sciences, vol.115, issue.Pt 8, pp.11249-11254, 2016.
DOI : 10.1038/nprot.2006.478

URL : http://www.pnas.org/content/113/40/11249.full.pdf

G. J. Hermann, Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p, The Journal of Cell Biology, vol.260, issue.2, pp.359-373, 1998.
DOI : 10.1002/yea.320110602

S. Fritz, D. Rapaport, E. Klanner, W. Neupert, and B. Westermann, Connection of the Mitochondrial Outer and Inner Membranes by Fzo1 Is Critical for Organellar Fusion, The Journal of Cell Biology, vol.14, issue.4, pp.683-692, 2001.
DOI : 10.1146/annurev.bb.22.060193.002245

E. E. Griffin and D. C. Chan, Domain Interactions within Fzo1 Oligomers Are Essential for Mitochondrial Fusion, Journal of Biological Chemistry, vol.8, issue.24, pp.16599-16606, 2006.
DOI : 10.1126/science.1100612

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.540.5096

T. Brandt, L. Cavellini, W. Kühlbrandt, and M. M. Cohen, A mitofusin-dependent docking ring complex triggers mitochondrial fusion in vitro, Elife, vol.5, 2016.
DOI : 10.7554/elife.14618

URL : https://hal.archives-ouvertes.fr/hal-01550113

M. M. Cohen, Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion, Journal of Cell Science, vol.124, issue.9, pp.1403-1410, 2011.
DOI : 10.1242/jcs.079293

M. Escobar-henriques and F. Anton, Mechanistic perspective of mitochondrial fusion: Tubulation vs. fragmentation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.1, pp.162-175, 2013.
DOI : 10.1016/j.bbamcr.2012.07.016

URL : http://doi.org/10.1016/j.bbamcr.2012.07.016

F. Anton, G. Dittmar, T. Langer, and M. Escobar-henriques, Two Deubiquitylases Act on Mitofusin and Regulate Mitochondrial Fusion along Independent Pathways, Molecular Cell, vol.49, issue.3, pp.487-498, 2013.
DOI : 10.1016/j.molcel.2012.12.003

URL : http://doi.org/10.1016/j.molcel.2012.12.003

H. H. Low and J. Löwe, A bacterial dynamin-like protein, Nature, vol.88, issue.7120, pp.766-769, 2006.
DOI : 10.1038/nature05312

H. H. Low, C. Sachse, L. A. Amos, and J. Löwe, Structure of a Bacterial Dynamin-like Protein Lipid Tube Provides a Mechanism For Assembly and Membrane Curving, Cell, vol.139, issue.7, pp.1342-1352, 2009.
DOI : 10.1016/j.cell.2009.11.003

Y. Qi, Structures of human mitofusin 1 provide insight into mitochondrial tethering, The Journal of Cell Biology, vol.114, issue.5, pp.621-629, 2016.
DOI : 10.1038/ng1341

Y. Cao, MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion, Nature, vol.29, issue.7641, pp.372-376, 2017.
DOI : 10.1016/j.ceb.2014.03.006

A. Franco, Correcting mitochondrial fusion by manipulating mitofusin conformations, Nature, vol.12, issue.7631, pp.74-79, 2016.
DOI : 10.1038/nmeth.3213

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315023

A. B. Knott, G. Perkins, R. Schwarzenbacher, and E. Bossy-wetzel, Mitochondrial fragmentation in neurodegeneration, Nature Reviews Neuroscience, vol.105, issue.7, pp.505-518, 2008.
DOI : 10.1093/jnen/60.8.759

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711514

V. B. Chen, : all-atom structure validation for macromolecular crystallography, Acta Crystallographica Section D Biological Crystallography, vol.285, issue.1, pp.12-21, 2010.
DOI : 10.1107/S0907444909042073

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/pdf

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, Journal of Applied Crystallography, vol.26, issue.2, pp.283-291, 1993.
DOI : 10.1107/S0021889892009944

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.456.9442

D. T. Jones and D. Cozzetto, DISOPRED3: precise disordered region predictions with annotated protein-binding activity, Bioinformatics, vol.31, issue.6, pp.857-863, 2015.
DOI : 10.1093/bioinformatics/btu744

URL : https://academic.oup.com/bioinformatics/article-pdf/31/6/857/17127039/btu744.pdf

A. A. Polyansky, PREDDIMER: a web server for prediction of transmembrane helical dimers, Bioinformatics, vol.30, issue.6, pp.889-890, 2014.
DOI : 10.1093/bioinformatics/btt645

B. Brosig and D. Langosch, The dimerization motif of the glycophorin A transmembrane segment in membranes: Importance of glycine residues, Protein Science, vol.252, issue.4, pp.1052-1056, 1998.
DOI : 10.1515/bchm3.1994.375.1.61

M. A. Lemmon, H. R. Treutlein, P. D. Adams, A. T. Brünger, and D. M. Engelman, A dimerization motif for transmembrane ?????helices, Nature Structural Biology, vol.12, issue.3, pp.157-163, 1994.
DOI : 10.1016/0092-8674(86)90779-8

P. Hubert, Single-spanning transmembrane domains in cell growth and cell-cell interactions, Cell Adhesion & Migration, vol.14, issue.2, pp.313-324, 2010.
DOI : 10.1016/0263-7855(96)00018-5

URL : http://www.tandfonline.com/doi/pdf/10.4161/cam.4.2.12430?needAccess=true

R. F. Walters and W. Degrado, Helix-packing motifs in membrane proteins, Proc. Natl. Acad. Sci. USA 103, pp.13658-13663, 2006.
DOI : 10.1007/s00894-004-0212-y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1564267

S. Zhang, The Membrane- and Soluble-Protein Helix-Helix Interactome: Similar Geometry via Different Interactions, Structure, vol.23, issue.3, pp.527-541, 2015.
DOI : 10.1016/j.str.2015.01.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351763

E. G. Hutchinson and J. M. Thornton, HERA???A program to draw schematic diagrams of protein secondary structures, Proteins: Structure, Function, and Genetics, vol.250, issue.3, pp.203-212, 1990.
DOI : 10.1107/S0108767387011875

H. Sesaki and R. Jensen, Ugo1p Links the Fzo1p and Mgm1p GTPases for Mitochondrial Fusion, Journal of Biological Chemistry, vol.115, issue.27, pp.28298-28303, 2004.
DOI : 10.1016/S0006-291X(02)02874-7

URL : http://www.jbc.org/content/279/27/28298.full.pdf

L. Cavellini, An ubiquitin-dependent balance between mitofusin turnover and fatty acids desaturation regulates mitochondrial fusion, Nature Communications, vol.80, p.15832, 2017.
DOI : 10.1016/S0091-679X(06)80032-4

URL : https://hal.archives-ouvertes.fr/hal-01549024

T. Koshiba, Structural Basis of Mitochondrial Tethering by Mitofusin Complexes, Science, vol.305, issue.5685, pp.858-862, 2004.
DOI : 10.1126/science.1099793

F. Anton, Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion, Journal of Cell Science, vol.124, issue.7, pp.1126-1135, 2011.
DOI : 10.1242/jcs.073080

URL : https://hal.archives-ouvertes.fr/hal-00586780

J. M. Mason and K. M. Arndt, Coiled Coil Domains: Stability, Specificity, and Biological Implications, ChemBioChem, vol.24, issue.2, pp.170-176, 2004.
DOI : 10.1107/S0021889891004399

M. Durrieu, R. Lavery, and M. Baaden, Interactions between Neuronal Fusion Proteins Explored by Molecular Dynamics, Biophysical Journal, vol.94, issue.9, pp.3436-3446, 2008.
DOI : 10.1529/biophysj.107.123117

URL : https://hal.archives-ouvertes.fr/hal-00315180

X. Bian, Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA, pp.3976-3981, 2011.
DOI : 10.1073/pnas.1012792108

J. S. Chappie, S. Acharya, M. Leonard, S. L. Schmid, and F. Dyda, G domain dimerization controls dynamin's assembly-stimulated GTPase activity, Nature, vol.12, issue.7297, pp.435-440, 2010.
DOI : 10.1091/mbc.E03-01-0019

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890

O. Daumke and G. J. Praefcke, Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily, Biopolymers, vol.108, issue.8, pp.580-593, 2016.
DOI : 10.1073/pnas.1113888108

A. Santel and M. T. Fuller, Control of mitochondrial morphology by a human mitofusin, J. Cell. Sci, vol.114, pp.867-874, 2001.

T. Shutt, M. Geoffrion, R. Milne, and H. M. Mcbride, The intracellular redox state is a core determinant of mitochondrial fusion, EMBO reports, vol.263, issue.10, pp.909-915, 2012.
DOI : 10.1016/S0092-8674(00)81966-2

E. Boutet, UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View, Methods Mol. Biol, vol.1374, pp.23-54, 2016.
DOI : 10.1007/978-1-4939-3167-5_2

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

H. M. Berman, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

F. Armougom, Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee, Nucleic Acids Research, vol.34, issue.Web Server, pp.604-608, 2006.
DOI : 10.1093/nar/gkl092

I. M. Wallace, O. O-'sullivan, D. G. Higgins, and C. Notredame, M-Coffee: combining multiple sequence alignment methods with T-Coffee, Nucleic Acids Research, vol.34, issue.6, pp.1692-1699, 2006.
DOI : 10.1093/nar/gkl091

URL : http://doi.org/10.1093/nar/gkl091

F. Sievers, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology, vol.7, issue.1, p.539, 2011.
DOI : 10.1093/nar/gkn174

URL : http://doi.org/10.1038/msb.2011.75

C. Notredame, D. G. Higgins, and J. Heringa, T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1Edited by J. Thornton, Journal of Molecular Biology, vol.302, issue.1, pp.205-217, 2000.
DOI : 10.1006/jmbi.2000.4042

Y. Wei, J. Thompson, and C. A. Floudas, CONCORD: a consensus method for protein secondary structure prediction via mixed integer linear optimization, Proc. R. Soc. A rspa20110514, p.514, 2011.
DOI : 10.1016/0022-2836(87)90501-8

D. T. Jones, Protein secondary structure prediction based on position-specific scoring matrices 1 1Edited by G. Von Heijne, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

R. Yan, D. Xu, J. Yang, S. Walker, and Y. Zhang, A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction, Scientific Reports, vol.33, issue.6, p.2619, 2013.
DOI : 10.1093/nar/gki418

G. Pollastri and A. Mclysaght, Porter: a new, accurate server for protein secondary structure prediction, Bioinformatics, vol.21, issue.8, pp.1719-1720, 2005.
DOI : 10.1093/bioinformatics/bti203

R. A. Laskowski and M. B. Swindells, LigPlot+: Multiple Ligand???Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, vol.51, issue.10, pp.2778-2786, 2011.
DOI : 10.1021/ci200227u

A. Lupas, M. Van-dyke, and J. Stock, Predicting coiled coils from protein sequences, Science, vol.252, issue.5009, pp.1162-1164, 1991.
DOI : 10.1126/science.252.5009.1162

T. Nugent and D. T. Jones, Transmembrane protein topology prediction using support vector machines, BMC Bioinformatics, vol.10, issue.1, p.159, 2009.
DOI : 10.1186/1471-2105-10-159

URL : http://doi.org/10.1186/1471-2105-10-159

H. Viklund and A. Elofsson, OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar, Bioinformatics, vol.24, issue.15, pp.1662-1668, 2008.
DOI : 10.1093/bioinformatics/btn221

URL : https://academic.oup.com/bioinformatics/article-pdf/24/15/1662/16881593/btn221.pdf

K. Hofmann and W. Stoffel, TMBASE -A database of membrane spanning protein segments, Biol. Chem. Hoppe-Seyler, vol.374, p.166, 1993.

A. Sali and T. L. Blundell, Comparative Protein Modelling by Satisfaction of Spatial Restraints, Journal of Molecular Biology, vol.234, issue.3, pp.779-815, 1993.
DOI : 10.1006/jmbi.1993.1626

A. Fiser, R. K. Do, and A. Sali, Modeling of loops in protein structures, Protein Science, vol.14, issue.9, pp.1753-1773, 2000.
DOI : 10.1002/ijch.199400028

M. Shen and A. Sali, Statistical potential for assessment and prediction of protein structures, Protein Science, vol.12, issue.11, pp.2507-2524, 2006.
DOI : 10.1074/jbc.272.2.701

R. L. Dunbrack, Rotamer Libraries in the 21st Century, Current Opinion in Structural Biology, vol.12, issue.4, pp.431-440, 2002.
DOI : 10.1016/S0959-440X(02)00344-5

C. R. Søndergaard, M. H. Olsson, M. Rostkowski, and J. H. Jensen, Values, Journal of Chemical Theory and Computation, vol.7, issue.7, pp.2284-2295, 2011.
DOI : 10.1021/ct200133y

T. J. Dolinsky, PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Research, vol.35, issue.Web Server, pp.522-525, 2007.
DOI : 10.1093/nar/gkm276

N. J. Gleason, V. V. Vostrikov, D. V. Greathouse, and R. E. Koeppe, Buried lysine, but not arginine, titrates and alters transmembrane helix tilt, Proc. Natl. Acad. Sci. USA, pp.1692-1695, 2013.
DOI : 10.1063/1.1416902

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562795

M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes, Nucleic Acids Research, vol.40, issue.D1, pp.370-376, 2012.
DOI : 10.1093/nar/gkr703

H. J. Berendsen, D. Van-der-spoel, and R. Van-drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Computer Physics Communications, vol.91, issue.1-3, pp.43-56, 1995.
DOI : 10.1016/0010-4655(95)00042-E

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.3928

S. Jo, J. B. Lim, J. B. Klauda, and W. Im, CHARMM-GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes, Biophysical Journal, vol.97, issue.1, pp.50-58, 2009.
DOI : 10.1016/j.bpj.2009.04.013

URL : http://doi.org/10.1016/j.bpj.2008.12.109

S. Lee, CHARMM36 United Atom Chain Model for Lipids and Surfactants, The Journal of Physical Chemistry B, vol.118, issue.2, pp.547-556, 2014.
DOI : 10.1021/jp410344g

URL : https://hal.archives-ouvertes.fr/hal-01498054

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.
DOI : 10.1016/0009-2614(80)85344-9

L. Yan, Structural basis for mechanochemical role of Arabidopsis thaliana dynamin-related protein in membrane fission, Journal of Molecular Cell Biology, vol.3, issue.6, pp.378-381, 2011.
DOI : 10.1093/jmcb/mjr032

H. Kishida and S. Sugio, Crystal structure of gtpase domain fused with minimal stalks from human dynamin-1-like protein (dlp1) in complex with several nucleotide analogues, Curr. Top. Pept. Protein Res, vol.14, pp.67-7710, 2013.

L. Yan, Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion, The Journal of Cell Biology, vol.210, issue.6, pp.961-972, 2015.
DOI : 10.1038/ng758

T. Darden, D. York, and L. Pedersen, ) method for Ewald sums in large systems, The Journal of Chemical Physics, vol.9, issue.12, pp.10089-10092, 1993.
DOI : 10.1126/science.2548279

B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, LINCS: A linear constraint solver for molecular simulations, Journal of Computational Chemistry, vol.19, issue.12, pp.1463-1472, 1997.
DOI : 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.1767

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.33, issue.12, pp.2577-2637, 1983.
DOI : 10.1016/0005-2795(73)90350-4

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

X. Daura, Peptide Folding: When Simulation Meets Experiment, Angewandte Chemie International Edition, vol.38, issue.1-2, pp.236-240, 1999.
DOI : 10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M

M. S. Longtine, Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae, Yeast, vol.13, issue.10, pp.953-961, 1998.
DOI : 10.1128/MCB.4.8.1440

C. Volland, D. Urban-grimal, G. Géraud, and R. Haguenauer-tsapis, Endocytosis and degradation of the yeast uracil permease under adverse conditions, J. Biol. Chem, vol.269, pp.9833-9841, 1994.