Z. Helali, A. Markovits, C. Minot, and M. Abderrabba, First-row transition metal atoms adsorption on rutile TiO2(110) surface, Structural Chemistry, vol.112, issue.3, p.1309, 2012.
DOI : 10.1021/jp710323a

Z. Helali, A. Markovits, C. Minot, and M. Abderrabba, Metal atom adsorption on a defective TiO2???x support, Chemical Physics Letters, vol.594, pp.23-29, 2014.
DOI : 10.1016/j.cplett.2014.01.019

G. Bond and S. Tahir, Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity, Applied Catalysis, vol.71, issue.1, pp.1-31, 1991.
DOI : 10.1016/0166-9834(91)85002-D

G. Deo, I. Wachs, and J. Haber, ChemInform Abstract: Supported Vanadium Oxide Catalysts. Molecular Structural Characterization and Reactivity Properties, ChemInform, vol.4, issue.3, p.141, 1994.
DOI : 10.1002/chin.199603284

B. Weckhuysen and D. Keller, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catalysis Today, vol.78, issue.1-4, pp.25-46, 2003.
DOI : 10.1016/S0920-5861(02)00323-1

J. Summers and S. Ausen, Interaction of cerium oxide with noble metals, Journal of Catalysis, vol.58, issue.1, pp.131-143, 1979.
DOI : 10.1016/0021-9517(79)90251-3

S. Tauster, S. Fung, R. Baker, and J. Horsley, Strong Interactions in Supported-Metal Catalysts, Science, vol.211, issue.4487, pp.1121-1125, 1981.
DOI : 10.1126/science.211.4487.1121

S. Tauster, S. Fung, and R. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, Journal of the American Chemical Society, vol.100, issue.1, pp.170-175, 1978.
DOI : 10.1021/ja00469a029

C. Sousa and F. Illas, Ionic-covalent transition in titanium oxides, Physical Review B, vol.47, issue.19, pp.13974-13980, 1994.
DOI : 10.1103/PhysRevB.47.6207

URL : http://diposit.ub.edu/dspace/bitstream/2445/10854/1/89091.pdf

R. Sanderson, Electronegativity and bond energy, Journal of the American Chemical Society, vol.105, issue.8, pp.2259-226110, 1983.
DOI : 10.1021/ja00346a026

Y. Hill, Y. Huang, T. Ast, and B. Freiser, Study of the Gas-phase Chemistry of Y 2+ with Small Alkanes, 1<148::AID- RCM819>3.0.CO, pp.148-1541097, 1997.

T. Sharma, S. Sharma, and K. Bhandari, Polarographic behaviour of yttrium, The Analyst, vol.109, issue.12, pp.1615-161610, 1984.
DOI : 10.1039/an9840901615

A. Beltrán, J. Andrés, M. Calatayud, and J. Martins, Theoretical study of ZnO (1 0 1 0) and Cu/ZnO (1 0 1 0) surfaces, Chemical Physics Letters, vol.338, pp.4-6224, 2001.

M. Calatayud, A. Markovits, M. Menetrey, B. Mguig, and C. Minot, Adsorption on perfect and reduced surfaces of metal oxides, Catalysis Today, vol.85, issue.2-4, pp.2-4125, 2003.
DOI : 10.1016/S0920-5861(03)00381-X

M. Calatayud, A. Markovits, and C. Minot, Electron-count control on adsorption upon reducible and irreducible clean metal-oxide surfaces, Catalysis Today, vol.89, issue.3, pp.269-278, 2004.
DOI : 10.1016/j.cattod.2003.12.015

M. Calatayud, A. Markovits, and C. Minot, Periodic DFT studies on adsorption and reactivity on metal and metal oxide surfaces, of the American Scientific Publisher book " Quantum Chemical Calculations of Surfaces and Interfaces of Materials " UK, pp.183-210, 2008.

M. Ganduglia-pirovano, A. Hofmann, and J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surface Science Reports, vol.62, issue.6, pp.219-270, 2007.
DOI : 10.1016/j.surfrep.2007.03.002

M. Menetrey, A. Markovits, and C. Minot, Reactivity of a reduced metal oxide surface: hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO2(), Surface Science, vol.524, issue.1-3, pp.1-349, 2003.
DOI : 10.1016/S0039-6028(02)02464-0

M. Calatayud and C. Minot, Reactivity of the V2O5???TiO2-anatase catalyst: role of the oxygen sites, Topics in Catalysis, vol.33, issue.99, pp.1-417, 2006.
DOI : 10.1016/S0926-860X(97)00021-5

M. Calatayud and C. Minot, Compounds?, The Journal of Physical Chemistry C, vol.113, issue.28, pp.12186-1219410, 2009.
DOI : 10.1021/jp901465q

M. Calatayud, F. Tielens, D. Proft, and F. , Reactivity of gas-phase, crystal and supported V2O5 systems studied using density functional theory based reactivity indices, Chemical Physics Letters, vol.456, issue.1-3, pp.59-63, 2008.
DOI : 10.1016/j.cplett.2008.03.007

URL : https://hal.archives-ouvertes.fr/hal-01361372

J. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, pp.3865-3868, 1996.
DOI : 10.1063/1.446965

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.55.13479

M. Calatayud, https://sites.google.com/site, 2017.

G. Kresse and J. Furthmüller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.2, issue.16, pp.11169-11186, 1996.
DOI : 10.1016/0927-0256(94)90105-8

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, pp.15-50, 1996.
DOI : 10.1016/0927-0256(96)00008-0

G. Kresse and J. Hafner, molecular dynamics for open-shell transition metals, Physical Review B, vol.69, issue.17, pp.13115-13118, 1993.
DOI : 10.1103/PhysRevLett.69.1982

G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, Journal of Physics: Condensed Matter, vol.6, issue.40, p.8245, 1994.
DOI : 10.1088/0953-8984/6/40/015

K. Momma and F. Izumi, : a three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography, vol.41, issue.3, pp.653-658, 2008.
DOI : 10.1107/S0021889808012016

B. Morgan and G. Watson, A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface, Surface Science, vol.601, issue.21, pp.5034-5041, 2007.
DOI : 10.1016/j.susc.2007.08.025

B. Morgan and G. Watson, A Density Functional Theory + U Study of Oxygen Vacancy Formation at the (110), 101), and (001) Surfaces of Rutile TiO2, pp.7322-732810, 1021.

B. Morgan and G. Watson, Calculations, The Journal of Physical Chemistry C, vol.114, issue.5, pp.2321-2328, 2010.
DOI : 10.1021/jp9088047

D. Scanlon, A. Walsh, B. Morgan, and G. Watson, through the Formation of Oxygen Vacancies and Li Intercalation, The Journal of Physical Chemistry C, vol.112, issue.26, pp.9903-991110, 1021.
DOI : 10.1021/jp711334f

S. Fabris, S. De-gironcoli, S. Baroni, G. Vicario, and G. Balducci, Taming multiple valency with density functionals:???A case study of defective ceria, Physical Review B, vol.9, issue.4, p.41102, 2005.
DOI : 10.1103/RevModPhys.64.51

M. Cococcioni and S. De-gironcoli, method, Physical Review B, vol.17, issue.3, p.35105, 2005.
DOI : 10.1029/JB095iB13p21549

S. Fabris, S. De-gironcoli, S. Baroni, G. Vicario, and G. Balducci, Reply to Comment oñTaming multiple valency with density functionals: A case study of defective ceria, Physical Review B, issue.23, p.72237102, 2005.

G. Kresse, P. Blaha, D. Silva, J. Ganduglia-pirovano, and M. , Comment on ???Taming multiple valency with density functionals: A case study of defective ceria???, Physical Review B, vol.72, issue.23, p.72237101, 2005.
DOI : 10.1103/PhysRevLett.94.196102

S. Fabris, G. Vicario, G. Balducci, S. De-gironcoli, and S. Baroni, Electronic and Atomistic Structures of Clean and Reduced Ceria Surfaces, The Journal of Physical Chemistry B, vol.109, issue.48, pp.22860-22867, 2005.
DOI : 10.1021/jp0511698

M. Nolan, S. Grigoleit, D. Sayle, S. Parker, and G. Watson, Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria, Surface Science, vol.576, issue.1-3, pp.217-229, 2005.
DOI : 10.1016/j.susc.2004.12.016

Y. Jiang, J. Adams, and M. Van-schilfgaarde, Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities, The Journal of Chemical Physics, vol.2, issue.6, pp.64701-064709, 2005.
DOI : 10.1103/PhysRevB.64.115108

Y. Jiang, J. Adams, M. Van-schilfgaarde, R. Sharma, and P. Crozier, Theoretical study of environmental dependence of oxygen vacancy formation in CeO2, Applied Physics Letters, vol.87, issue.14, pp.141917-141917, 1063.
DOI : 10.1063/1.111783

C. Loschen, J. Carrasco, K. Neyman, and F. Illas, study of cerium oxides: Dependence on the effective U parameter, Physical Review B, vol.114, issue.3, p.35115, 2007.
DOI : 10.1016/S0368-2048(00)00394-7

M. Ivanov, T. Perevalov, V. Aliev, V. Gritsenko, and V. Kaichev, calculations and comparison with experiment, Journal of Applied Physics, vol.110, issue.2, pp.24115-024115, 2011.
DOI : 10.1109/55.919235

J. Kaczkowski, Electronic Structure of Some Wurtzite Semiconductors: Hybrid Functionals vs. Ab Initio Many Body Calculations, Acta Physica Polonica A, vol.121, issue.5-6, p.1142, 2012.
DOI : 10.12693/APhysPolA.121.1142

S. Lany, Semiconductor thermochemistry in density functional calculations, Physical Review B, vol.34, issue.24, p.245207, 2008.
DOI : 10.1016/j.jcrysgro.2004.03.024

P. Erhart, K. Albe, and A. Klein, First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects, Physical Review B, vol.14, issue.20, p.73205203, 2006.
DOI : 10.1103/PhysRevB.72.035211

A. Garza and G. Scuseria, Predicting Band Gaps with Hybrid Density Functionals, The Journal of Physical Chemistry Letters, vol.7, issue.20, pp.4165-4170, 2016.
DOI : 10.1021/acs.jpclett.6b01807

URL : http://arxiv.org/abs/1608.04796

J. Heyd, G. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, The Journal of Chemical Physics, vol.118, issue.18, pp.8207-8215, 2003.
DOI : 10.1063/1.477422

J. Heyd, G. Scuseria, and M. Ernzerhof, Erratum: " Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. The Journal of Chemical Physics, vol.118, issue.12421, p.219906, 2003.
DOI : 10.1063/1.1564060

T. Henderson, J. Paier, and G. Scuseria, Accurate treatment of solids with the HSE screened hybrid, physica status solidi (b), vol.109, issue.18, pp.767-774, 2011.
DOI : 10.1002/qua.22049

M. Lucero, T. Henderson, and G. Scuseria, Improved semiconductor lattice parameters and band gaps from a middle-range screened hybrid exchange functional, Journal of Physics: Condensed Matter, vol.24, issue.14, p.145504, 2012.
DOI : 10.1088/0953-8984/24/14/145504

P. Brix and G. Herzberg, The Dissociation Energy of Oxygen, The Journal of Chemical Physics, vol.21, issue.12, pp.2240-2240, 1953.
DOI : 10.1103/PhysRev.48.796

H. Gray, Chemical Bonds: An Introduction to Atomic and Molecular Structure, 1994.

B. Hammer, L. Hansen, and J. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Physical Review B, vol.320, issue.11, pp.7413-7421, 1999.
DOI : 10.1016/0039-6028(94)90310-7

URL : http://orbit.dtu.dk/files/4114802/Hammer.pdf

L. Wang, T. Maxisch, and G. Ceder, framework, Physical Review B, vol.83, issue.19, p.195107, 2006.
DOI : 10.1103/PhysRevB.69.165116

URL : https://hal.archives-ouvertes.fr/hal-01437906

E. Finazzi, D. Valentin, C. Pacchioni, G. Selloni, and A. , Excess electron states in reduced bulk anatase TiO 2: Comparison of standard GGA, GGA plus U, and hybrid DFT calculations, Journal of Chemical Physics, vol.129, issue.15, 2008.

A. Janotti, J. Varley, P. Rinke, N. Umezawa, G. Kresse et al., Hybrid functional studies of the oxygen vacancy in TiO2, Physical Review B, vol.81, issue.8, 2010.

F. Hannic and M. Hartmanova, Real structure of undopped Y2O3 Single cristal Acta Cryst B40: 76-82 64, 1984.

J. Garcia, L. Scolfaro, A. Lino, V. Freire, G. Farias et al., calculations, Journal of Applied Physics, vol.100, issue.10, p.104103, 2006.
DOI : 10.1103/PhysRevB.55.10355

URL : https://hal.archives-ouvertes.fr/in2p3-00000013

R. Hann, P. Suitch, and J. Pentecost, Monoclinic Crystal Structures of ZrO2 and HfO2 Refined from X-ray Powder Diffraction Data, Journal of the American Ceramic Society, vol.18, issue.10, 1985.
DOI : 10.1107/S0021889881008996

L. Gerward, J. Olsen, L. Petit, G. Vaitheeswaran, and K. Svane, Bulk modulus of CeO2 and PrO2???An experimental and theoretical study, Journal of Alloys and Compounds, vol.400, issue.1-2, p.56, 2005.
DOI : 10.1016/j.jallcom.2005.04.008

R. Enjalbert and J. Galy, A refinement of the structure of V2O5, Acta Crystallographica Section C Crystal Structure Communications, vol.42, issue.11, p.1467, 1986.
DOI : 10.1107/S0108270186091825

A. Fukumoto and K. Miwa, structure by first-principles calculations, Physical Review B, vol.30, issue.17, pp.11155-11160, 1997.
DOI : 10.1073/pnas.30.9.244

H. Jalili, Materials physics of half-metallic magnetic oxide films by Pulsed Laser Deposition: Controlling the crystal structure and near-surface properties of Sr2FeMoO6 and CrO2 films, 2008.

Y. Sawai, K. Hazu, and S. Chichibu, Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method, Journal of Applied Physics, vol.4, issue.6, 2010.
DOI : 10.1016/S0022-0248(01)01648-7

E. Lassner, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, 1999.
DOI : 10.1007/978-1-4615-4907-9

K. Saki, T. Kenji, and I. Nobuo, Structural Evolution of Corundum at High Temperatures, Japanese Journal of Applied Physics, vol.47, issue.1S, p.616, 2008.

H. He, R. , M. A. Blanco, and R. Pandey, First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases, doi:: 10.1103/PhysRevB, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01536055

G. Lager, J. Jorgensen, and F. Rotella, at low temperatures, Journal of Applied Physics, vol.18, issue.10, pp.6751-6756, 1982.
DOI : 10.1016/0022-4596(81)90449-7

J. Haines and J. Léger, X-ray diffraction study of the phase transitions and structural evolution of tin dioxide at high pressure:ffRelationships between structure types and implications for other rutile-type dioxides, Physical Review B, vol.44, issue.17, pp.11144-11154, 1997.
DOI : 10.1107/S0108768188007712

A. Postnikov, P. Entel, and P. Ordejon, SnO 2 : Bulk and Surface Simulations by an Ab Initio Numerical Local Orbitals Method, Phase Transitions, vol.75, issue.1-2, pp.143-149, 2002.
DOI : 10.1080/01411590290023030

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.2724

E. Kisi and M. Elcombe, u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction, Acta Crystallographica Section C Crystal Structure Communications, vol.45, issue.12, p.1867, 1989.
DOI : 10.1107/S0108270189004269

M. Orita, H. Ohta, M. Hirano, and H. Hosono, Deep-ultraviolet transparent conductive ??-Ga2O3 thin films, Applied Physics Letters, vol.81, issue.25, pp.4166-4168, 2000.
DOI : 10.1006/jssc.1994.1390

A. Deml, A. Holder, O. Hayre, R. Musgrave, C. Stevanovi? et al., Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides, The Journal of Physical Chemistry Letters, vol.6, issue.10, pp.1948-1953, 2015.
DOI : 10.1021/acs.jpclett.5b00710

D. Valentin, C. Pacchioni, and G. , Spectroscopic Properties of Doped and Defective Semiconducting Oxides from Hybrid Density Functional Calculations, Accounts of Chemical Research, vol.47, issue.11, pp.3233-3241, 2014.
DOI : 10.1021/ar4002944

C. Jun, L. Lin, T. Lu, and L. Yong, Electronic structure of F, -center in MgO, The European Physical Journal B, vol.9, issue.4, pp.593-598, 1999.
DOI : 10.1007/s100510050802

Y. Zhukovskii, E. Kotomin, R. Evarestov, and D. Ellis, Periodic models in quantum chemical simulations ofF centers in crystalline metal oxides, International Journal of Quantum Chemistry, vol.71, issue.239, pp.2956-2985, 2007.
DOI : 10.1557/S0883769400035909

L. Kantorovich, J. Holender, and M. Gillan, The energetics and electronic structure of defective and irregular surfaces on MgO, Surface Science, vol.343, issue.3, pp.221-239, 1995.
DOI : 10.1016/0039-6028(95)00844-6

B. Klein, W. Pickett, and L. Boyer, centers in the alkaline-earth oxides MgO and CaO, Physical Review B, vol.50, issue.11, pp.5802-5815, 1987.
DOI : 10.1103/PhysRevLett.50.1474

O. Safa and P. Kasap, Springer handbook of electronic and photonic materials, 2006.

H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, 2009.

F. Leiter, H. Alves, D. Pfisterer, N. Romanov, D. Hofmann et al., Oxygen vacancies in ZnO, Physica B: Condensed Matter, vol.340, issue.342, pp.340-342201, 2003.
DOI : 10.1016/j.physb.2003.09.031

J. Smith and W. Vehse, ESR of electron irradiated ZnO confirmation of the F+ center, Physics Letters A, vol.31, issue.3, pp.147-148, 1970.
DOI : 10.1016/0375-9601(70)90199-4

V. Soriano and D. Galland, Photosensitivity of the EPR spectrum of the F+ center in ZnO, physica status solidi (b), vol.19, issue.2, pp.739-743, 1976.
DOI : 10.1016/0375-9601(70)90614-6

F. Van-craeynest, . Maenhout-van-der, W. Vorst, and W. Dekeyser, Interpretation of the Yellow Colour of Heat Treated ZnO Powder, physica status solidi (b), vol.65, issue.3, pp.841-846, 1965.
DOI : 10.1098/rspa.1960.0058

W. Wei, . Center, and . Zno, center in ZnO, Physical Review B, vol.9, issue.4, pp.2250-2253, 1977.
DOI : 10.1002/pssb.19650090311

H. Himmel, L. Manceron, A. Downs, and P. Pullumbi, ChemInform Abstract: Formation and Characterization of the Gallium and Indium Subhydride Molecules Ga2H2 and In2H2: A Matrix Isolation Study., ChemInform, vol.124, issue.29, pp.4448-4457, 2002.
DOI : 10.1002/chin.200229003

J. Jegier and W. Gladfelter, The use of aluminum and gallium hydrides in materials science, Coordination Chemistry Reviews, vol.206, issue.207, pp.631-650, 2000.
DOI : 10.1016/S0010-8545(00)00300-3

J. Carrasco, J. Gomes, and F. Illas, Theoretical study of bulk and surface oxygen and aluminum vacancies in alpha-Al2O3, Physical Review B, vol.69, issue.6, 2004.

I. Oleinik, E. Tsymbal, and D. Pettifor, magnetic tunnel junction from first principles, Physical Review B, vol.44, issue.6, pp.3952-3959, 2000.
DOI : 10.1103/PhysRevB.44.6361

H. Asghar-rahnamaye-alibad and S. , Structural and Spin Polarization Effects of Cr, Fe and Ti Elements on Electronical Properties of ?? ???Al<sub>2</sub>O<sub>3</sub> by First Principle Calculations, Journal of Modern Physics, vol.02, issue.03, pp.158-161, 2011.
DOI : 10.4236/jmp.2011.23024

R. French, H. Müllejans, and D. Jones, Optical Properties of Aluminum Oxide: Determined from Vacuum Ultraviolet and Electron Energy-Loss Spectroscopies, Journal of the American Ceramic Society, vol.19, issue.23, pp.2549-2557, 1998.
DOI : 10.1016/B978-0-08-054721-3.50008-3

R. French, Electronic Band Structure of Al2O3, with Comparison to Alon and AIN, Journal of the American Ceramic Society, vol.73, issue.3, pp.477-489, 1990.
DOI : 10.1111/j.1151-2916.1990.tb06541.x

R. French, D. Jones, and S. Loughin, Interband Electronic Structure of alpha-Alumina up to 2167 K, Journal of the American Ceramic Society, vol.44, issue.10, pp.412-422, 1994.
DOI : 10.1016/B978-0-08-054721-3.50008-3

W. Tews and R. Gründler, Electron-Energy-Loss Spectroscopy of Different Al2O3 Modifications. I. Energy Loss Function, Dielectric Function, Oscillator Strength Sum Rule and the Quantity ??2E, physica status solidi (b), vol.9, issue.1, pp.255-264, 1982.
DOI : 10.1007/BF01326444

Y. Xu and W. Ching, Electronic and optical properties of all polymorphic forms of silicon dioxide, Physical Review B, vol.40, issue.10, pp.11048-11059, 1991.
DOI : 10.1103/PhysRevB.40.7684

L. Kantorovich, J. Holender, and M. Gillan, The energetics and electronic structure of defective and irregular surfaces on MgO, Surface Science, vol.343, issue.3, pp.221-239, 1995.
DOI : 10.1016/0039-6028(95)00844-6

Y. Zhukovskii, E. Kotomin, R. Evarestov, and D. Ellis, Periodic models in quantum chemical simulations ofF centers in crystalline metal oxides, International Journal of Quantum Chemistry, vol.71, issue.239, pp.2956-2985, 2007.
DOI : 10.1557/S0883769400035909

Y. Xu, Z. Gu, and W. Ching, Electronic, structural, and optical properties of crystalline yttria, Physical Review B, vol.35, issue.23, p.23, 1997.
DOI : 10.1103/PhysRevB.35.5856

H. Badehian, H. Salehi, and M. Ghoohestani, ) Ceramic in Cubic Phase, Journal of the American Ceramic Society, vol.254, issue.12, pp.1832-1840, 2013.
DOI : 10.1016/j.apsusc.2007.10.071

R. Sah, Silicon Nitride, Silicon Dioxide, and Emerging Dielectrics, vol.11, issue.35, 2011.

R. Mehandru, B. Luo, J. Kim, F. Ren, B. Gila et al., AlGaN/GaN metal???oxide???semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation, Applied Physics Letters, vol.82, issue.15, pp.2530-2532, 2003.
DOI : 10.1149/1.1512675

A. Foster, F. Gejo, A. Shluger, and R. Nieminen, Vacancy and interstitial defects in hafnia, Physical Review B, vol.102, issue.17, 2002.
DOI : 10.1002/pssb.2221020203

URL : https://aaltodoc.aalto.fi:443/bitstream/123456789/17359/1/A1_foster_a_s_2002.pdf

M. Balog, M. Schieber, M. Michman, and S. Patai, Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds, Thin Solid Films, vol.41, issue.3, pp.247-2590040, 1977.
DOI : 10.1016/0040-6090(77)90312-1

A. Foster, V. Sulimov, F. Gejo, A. Shluger, and R. Nieminen, Structure and electrical levels of point defects in monoclinic zirconia, Physical Review B, vol.44, issue.22, 2001.
DOI : 10.1107/S0108768187010279

B. Kralik, E. Chang, and S. Louie, Structural properties and quasiparticle band structure of zirconia, Physical Review B, vol.131, issue.12, pp.7027-7036, 1998.
DOI : 10.1006/jcph.1996.5612

J. Robertson, N. Vast, P. Baranek, M. Cheynet, and L. Reining, High dielectric constant gate oxides for metal oxide Si transistors Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia, Reports on Progress in Physics Physical Review B, vol.696970, issue.7024, pp.327-39610, 2004.

J. Varley, J. Weber, A. Janotti, and C. Van-de-walle, Oxygen vacancies and donor impurities in ??-Ga2O3, Applied Physics Letters, vol.30, issue.14, pp.142106-142106, 2010.
DOI : 10.1063/1.2919728

M. Orita, H. Ohta, M. Hirano, and H. Hosono, Deep-ultraviolet transparent conductive ??-Ga2O3 thin films, Applied Physics Letters, vol.81, issue.25, pp.4166-4168, 2000.
DOI : 10.1006/jssc.1994.1390

M. Passlack, E. Schubert, W. Hobson, M. Hong, N. Moriya et al., films for electronic and optoelectronic applications, Journal of Applied Physics, vol.14, issue.2, pp.686-693, 1995.
DOI : 10.1016/0038-1101(71)90177-8

K. Yamaguchi, First principles study on electronic structure of ??-Ga2O3, Solid State Communications, vol.131, issue.12, pp.739-744, 2004.
DOI : 10.1016/j.ssc.2004.07.030

L. Thulin and J. Guerra, Calculations of strain-modified anatase TiO2 band structures, Physical Review B, vol.77, issue.19, 2008.

U. Diebold, The surface science of titanium dioxide, Surface Science Reports, vol.48, issue.5-8, pp.5-853, 2003.
DOI : 10.1016/S0167-5729(02)00100-0

Z. Yang, T. Woo, M. Baudin, and K. Hermansson, Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study, The Journal of Chemical Physics, vol.50, issue.16, pp.7741-7749, 2004.
DOI : 10.1063/1.1557919

S. Clima, G. Pourtois, S. Van-elshocht, D. Gendt, S. Heyns et al., Dielectric Response of Ta2O5, NbTaO5 and Nb2O5 from First-Principles Investigations, ECS Transactions, pp.729-737, 2009.
DOI : 10.1149/1.3122128

A. Darlinski and J. Halbritter, Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces, Surface and Interface Analysis, vol.52, issue.5, pp.223-237, 1987.
DOI : 10.1103/PhysRevB.24.4128

K. Mishra, K. Johnson, and P. Schmidt, Electronic structure of antimony-doped tin oxide, Physical Review B, vol.4, issue.20, pp.13972-13976, 1995.
DOI : 10.1088/0022-3719/4/14/022

A. Bouzoubaa, A. Markovits, M. Calatayud, and C. Minot, Comparison of the reduction of metal oxide surfaces: TiO2-anatase, TiO2-rutile and SnO2-rutile, Surface Science, vol.583, issue.1, 2005.
DOI : 10.1016/j.susc.2005.03.029

S. Afd, I. Pepe, C. Persson, J. Souza_de_almeida, C. Moyses_araujo et al., Optical Properties of Oxide Compounds PbO, SnO2 and TiO2, Physica Scripta, vol.109, pp.180-183, 2004.

T. Rantala, T. Rantala, and V. Lantto, Electronic structure of SnO2 (110) surface, Materials Science in Semiconductor Processing, vol.3, issue.1-2, pp.103-107, 2000.
DOI : 10.1016/S1369-8001(00)00021-4

. Landolt-börnstein, Numerical Data and Functional Relationship in Science and Technology, 1982.

A. Janotti, J. Varley, P. Rinke, N. Umezawa, G. Kresse et al., Hybrid functional studies of the oxygen vacancy in TiO2, Physical Review B, vol.81, issue.8, 2010.

T. Gu, First-principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt heterojunction: Electronic structures and transport properties, Journal of Applied Physics, vol.106, issue.10, p.3713, 2009.
DOI : 10.1103/PhysRevLett.77.3865

M. Ivanov, T. Perevalov, V. Aliev, V. Gritsenko, and V. Kaichev, calculations and comparison with experiment, Journal of Applied Physics, vol.110, issue.2, pp.24115-024115, 2011.
DOI : 10.1109/55.919235

Z. Helali, M. Calatayud, and C. Minot, Structure Obtained from DFT Calculations, The Journal of Physical Chemistry C, vol.118, issue.25, pp.13652-13658, 2014.
DOI : 10.1021/jp503088h

W. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. Kondo et al., Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods., ChemInform, vol.107, issue.21, pp.1798-180310, 1021.
DOI : 10.1002/chin.200321011

F. Tepehan, F. Ghodsi, N. Ozer, and G. Tepehan, Determination of optical properties of amorphous Ta2O5 films deposited by spin- and dip-coating methods, Solar Energy Materials and Solar Cells, vol.46, issue.4, pp.311-321, 1997.
DOI : 10.1016/S0927-0248(97)80004-9

Y. Li, L. Wu, J. Li, Y. Zhang, X. Huang et al., Study on the band structures of defective and irregular surfaces on MgO, Chinese Journal of Structural Chemistry, vol.18, issue.3, pp.218-226, 1999.

V. Shvets, V. Aliev, D. Gritsenko, S. Shaimeev, E. Fedosenko et al., Electronic structure and charge transport properties of amorphous Ta2O5 films, Journal of Non-Crystalline Solids, vol.354, issue.26, pp.3025-3033, 2008.
DOI : 10.1016/j.jnoncrysol.2007.12.013

D. Scanlon, A. Walsh, B. Morgan, and G. Watson, through the Formation of Oxygen Vacancies and Li Intercalation, The Journal of Physical Chemistry C, vol.112, issue.26, pp.9903-991110, 1021.
DOI : 10.1021/jp711334f

R. Zimmermann, P. Steiner, R. Claessen, F. Reinert, S. Hüfner et al., Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency, Journal of Physics: Condensed Matter, vol.11, issue.7, p.1657, 1999.
DOI : 10.1088/0953-8984/11/7/002

M. Kaid, Characterization of electrochromic vanadium pentoxide thin films prepared by spray pyrolysis, Egypt J Solids, vol.29, issue.2, pp.273-291, 2006.

O. Madelung, U. Rössler, and M. Schulz, V2O5: energy gap: cluster calculations data In: Landolt- Börnstein -Group III Condensed Matter 41D, pp.10-1007, 2014.

N. Van-hieu and D. Lichtman, powder and vanadium oxide surfaces, Journal of Vacuum Science and Technology, vol.18, issue.1, pp.49-53, 1981.
DOI : 10.1116/1.570698

Z. Hanafi, F. Ismail, and A. Mohamed, X-ray Photoelectron Spectroscopy of Chromium Trioxide and some of its Suboxides, Zeitschrift für Physikalische Chemie, 1996.
DOI : 10.1016/S0010-938X(77)80002-4

M. Khilla and A. Hanna, Electrical properties of semiconductor materials. Chromium trioxide, Thermochimica Acta, vol.51, issue.2-3, pp.335-3410040, 1981.
DOI : 10.1016/0040-6031(81)85171-4

L. Wang, T. Maxisch, and G. Ceder, framework, Physical Review B, vol.83, issue.19, p.195107, 2006.
DOI : 10.1103/PhysRevB.69.165116

URL : https://hal.archives-ouvertes.fr/hal-01437906

H. Zhai, S. Li, D. Dixon, and L. Wang, = 1???5): Photoelectron Spectroscopy and Density Functional Calculations, Journal of the American Chemical Society, vol.130, issue.15, pp.5167-517710, 1021.
DOI : 10.1021/ja077984d

D. Bullett, and tungsten bronzes, Journal of Physics C: Solid State Physics, vol.16, issue.11, p.2197, 1983.
DOI : 10.1088/0022-3719/16/11/022

D. Wijs, G. , D. Boer, P. , D. Groot et al., from first-principles calculations, Physical Review B, vol.132, issue.4, pp.2684-2693, 1999.
DOI : 10.1006/jssc.1997.7420

F. Koffyberg, K. Dwight, and A. Wold, Interband transitions of semiconducting oxides determined from photoelectrolysis spectra, Solid State Communications, vol.30, issue.7, pp.433-437, 1979.
DOI : 10.1016/0038-1098(79)91182-7

G. Hollinger, P. Pertosa, J. Doumerc, F. Himpsel, and B. Reihl, Metal-nonmetal transition in tungsten bronzes: A photoemission study, Physical Review B, vol.16, issue.4, pp.1987-1991, 1985.
DOI : 10.1088/0022-3719/16/32/013

J. Kaczkowski, Electronic Structure of Some Wurtzite Semiconductors: Hybrid Functionals vs. Ab Initio Many Body Calculations, Acta Physica Polonica A, vol.121, issue.5-6, p.1142, 2012.
DOI : 10.12693/APhysPolA.121.1142

M. Usuda, N. Hamada, T. Kotani, and M. Van-schilfgaarde, calculation based on the LAPW method:???Application to wurtzite ZnO, Physical Review B, vol.4, issue.12, p.125101, 2002.
DOI : 10.1103/PhysRevB.6.3056

URL : http://arxiv.org/pdf/cond-mat/0202308

S. Massidda, R. Resta, M. Posternak, and A. Baldereschi, Polarization and dynamical charge of ZnO within different one-particle schemes, Physical Review B, vol.66, issue.24, pp.16977-16980, 1995.
DOI : 10.1007/978-3-642-93385-1

M. Oshikiri and F. Aryasetiawan, Quasiparticle Energy Calculations on II(Zn)-VI(O, S, Se) and III(Al,Ga)-V(N) Semiconductors in the Wurtzite Structure, Journal of the Physical Society of Japan, vol.69, issue.7, pp.2113-2120, 2000.
DOI : 10.1143/JPSJ.69.2113

J. Muscat, A. Wander, and N. Harrison, On the prediction of band gaps from hybrid functional theory, Chemical Physics Letters, vol.342, issue.3-4, pp.3-4397, 2001.
DOI : 10.1016/S0009-2614(01)00616-9

O. Safa and P. Kasap, Springer handbook of electronic and photonic materials, 2006.

J. Carrasco, N. Lopez, and F. Illas, First Principles Analysis of the Stability and Diffusion of Oxygen Vacancies in Metal Oxides, Physical Review Letters, vol.68, issue.22, p.225502225502, 2004.
DOI : 10.1103/PhysRevLett.91.196102

M. Ganduglia-pirovano, A. Hofmann, and J. Sauer, Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges, Surface Science Reports, vol.62, issue.6, 2007.
DOI : 10.1016/j.surfrep.2007.03.002

Y. Jiang, J. Adams, M. Van-schilfgaarde, R. Sharma, and P. Crozier, Theoretical study of environmental dependence of oxygen vacancy formation in CeO2, Applied Physics Letters, vol.87, issue.14, pp.141917-141917, 1063.
DOI : 10.1063/1.111783

Z. Helali, M. Calatayud, and C. Minot, Structure Obtained from DFT Calculations, The Journal of Physical Chemistry C, vol.118, issue.25, pp.13652-13658, 2014.
DOI : 10.1021/jp503088h