L. G. Lajtha, Stem Cell Concepts, Differentiation, vol.14, issue.1-3, pp.23-34, 1979.
DOI : 10.1111/j.1432-0436.1979.tb01007.x

J. Kaur and M. L. Tilkins, Methods for Culturing Human Embryonic Stem Cells on Feeders, Methods Mol. Biol, vol.997, pp.93-113, 2013.
DOI : 10.1007/978-1-62703-348-0_8

M. Ogawa, A. C. Larue, and M. Mehrotra, Hematopoietic stem cells are pluripotent and not just ???hematopoietic???, Blood Cells, Molecules, and Diseases, vol.51, issue.1, pp.3-8, 2013.
DOI : 10.1016/j.bcmd.2013.01.008

H. Oshima, A. Rochat, C. Kedzia, K. Kobayashi, and Y. Barrandon, Morphogenesis and Renewal of Hair Follicles from Adult Multipotent Stem Cells, Cell, vol.104, issue.2, pp.233-245, 2001.
DOI : 10.1016/S0092-8674(01)00208-2

URL : http://doi.org/10.1016/s0092-8674(01)00208-2

A. Rochat, K. Kobayashi, and Y. Barrandon, Location of stem cells of human hair follicles by clonal analysis, Cell, vol.76, issue.6, pp.1063-1073, 1994.
DOI : 10.1016/0092-8674(94)90383-2

H. Spemann and H. Mangold, Induction of embryonic primordia by implantation of organizers from a different species, Int. J. Dev. Biol, vol.45, pp.13-38, 1923.

A. J. Reynolds and C. A. Jahoda, Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis, Development, vol.115, pp.587-593, 1992.

D. J. Pearton, Y. Yang, and D. Dhouailly, Transdifferentiation of corneal epithelium into epidermis occurs by means of a multistep process triggered by dermal developmental signals, Proc. Natl. Acad. Sci. USA 2005, pp.3714-3719
DOI : 10.1046/j.1523-1747.1998.00087.x

P. Bonfanti, S. Claudinot, A. W. Amici, A. Farley, C. C. Blackburn et al., Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells, Nature, vol.9, issue.7309, pp.978-982, 2010.
DOI : 10.4049/jimmunol.172.1.617

F. Mavilio, G. Pellegrini, S. Ferrari, F. Di-nunzio, E. Di-iorio et al., Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells, Nature Medicine, vol.3, issue.12, pp.1397-1402, 2006.
DOI : 10.1038/nm1504

URL : https://hal.archives-ouvertes.fr/pasteur-01536191

J. G. Rheinwald and H. Green, Seria cultivation of strains of human epidemal keratinocytes: the formation keratinizin colonies from single cell is, Cell, vol.6, issue.3, pp.331-343, 1975.
DOI : 10.1016/S0092-8674(75)80001-8

J. G. Rheinwald and H. Green, Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes, Nature, vol.64, issue.5593, pp.421-424, 1977.
DOI : 10.3181/00379727-116-29346

Y. Barrandon and H. Green, Three clonal types of keratinocyte with different capacities for multiplication., Proc. Natl. Acad. Sci, pp.2302-2306, 1987.
DOI : 10.1073/pnas.84.8.2302

G. G. Gallico, N. E. Iii-;-o-'connor, C. C. Compton, O. Kehinde, and H. Green, Permanent coverage of large burn wounds with autologous cultured human epithelium, N. Engl. J. Med, pp.311-448, 1984.

T. D. Allen and C. S. Potten, Fine-structural identification and organization of the epidermal proliferative unit, J. Cell Sci, vol.15, pp.291-319, 1974.

C. S. Potten, THE EPIDERMAL PROLIFERATIVE UNIT: THE POSSIBLE ROLE OF THE CENTRAL BASAL CELL, Cell Proliferation, vol.40, issue.2, pp.77-88, 1974.
DOI : 10.2307/3572220

C. S. Potten and T. D. Allen, The fine structure and cell kinetics of mouse epidermis after wounding, J. Cell Sci, vol.17, pp.413-447, 1975.

S. Ghazizadeh and L. B. Taichman, Organization of Stem Cells and Their Progeny in Human Epidermis, Journal of Investigative Dermatology, vol.124, issue.2, pp.367-372, 2005.
DOI : 10.1111/j.0022-202X.2004.23599.x

T. M. Kolodka, J. A. Garlick, and L. B. Taichman, Evidence for keratinocyte stem cells in vitro: Long term engraftment and persistence of transgene expression from retrovirus-transduced keratinocytes, Proc. Natl. Acad. Sci, pp.4356-4361, 1998.
DOI : 10.1007/BF00225420

E. Clayton, D. P. Doupe, A. M. Klein, D. J. Winton, B. D. Simons et al., A single type of progenitor cell maintains normal epidermis, Nature, vol.44, issue.7132, pp.185-189, 2007.
DOI : 10.1016/S0002-9440(10)64670-6

G. Cotsarelis, T. T. Sun, and R. M. Lavker, Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis, Cell, vol.61, issue.7, pp.1329-1337, 1990.
DOI : 10.1016/0092-8674(90)90696-C

S. Claudinot, M. Nicolas, H. Oshima, A. Rochat, and Y. Barrandon, From The Cover: Long-term renewal of hair follicles from clonogenic multipotent stem cells, Proc. Natl. Acad. Sci. USA 2005, pp.14677-14682
DOI : 10.1038/416854a

R. J. Morris, Y. Liu, L. Marles, Z. Yang, C. Trempus et al., Capturing and profiling adult hair follicle stem cells, Nature Biotechnology, vol.22, issue.4, pp.411-417, 2004.
DOI : 10.1038/nbt950

G. Taylor, M. S. Lehrer, P. J. Jensen, T. T. Sun, and R. M. Lavker, Involvement of Follicular Stem Cells in Forming Not Only the Follicle but Also the Epidermis, Cell, vol.102, issue.4, pp.451-461, 2000.
DOI : 10.1016/S0092-8674(00)00050-7

Y. Liu, S. Lyle, Z. Yang, and G. Cotsarelis, Keratin 15 Promoter Targets Putative Epithelial Stem Cells in the Hair Follicle Bulge, Journal of Investigative Dermatology, vol.121, issue.5, pp.963-968, 2003.
DOI : 10.1046/j.1523-1747.2003.12600.x

C. S. Trempus, R. J. Morris, C. D. Bortner, G. Cotsarelis, R. S. Faircloth et al., Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34, J. Invest. Dermatol, vol.120, pp.501-511, 2003.

M. Ohyama, Hair follicle bulge: A fascinating reservoir of epithelial stem cells, Journal of Dermatological Science, vol.46, issue.2, pp.81-89, 2007.
DOI : 10.1016/j.jdermsci.2006.12.002

J. N. Brady, M. C. Udey, and J. Vogel, Characterization and isolation of stem cell-enriched human hair follicle bulge cells, J. Clin. Invest, vol.116, pp.249-260, 2006.

R. M. Lavker and T. Sun, Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations, Science, vol.215, issue.4537, pp.1239-1241, 1982.
DOI : 10.1126/science.7058342

J. C. Adams and F. M. Watt, Changes in keratinocyte adhesion during terminal differentiation: Reduction in fibronectin binding precedes ??5??1 integrin loss from the cell surface, Cell, vol.63, issue.2, pp.425-435, 1990.
DOI : 10.1016/0092-8674(90)90175-E

P. H. Jones and F. M. Watt, Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression, Cell, vol.73, issue.4, pp.713-724, 1993.
DOI : 10.1016/0092-8674(93)90251-K

P. Kaur and A. Li, Adhesive Properties of Human Basal Epidermal Cells: An Analysis of Keratinocyte Stem Cells, Transit Amplifying Cells, and Postmitotic Differentiating Cells, Journal of Investigative Dermatology, vol.114, issue.3, pp.413-420, 2000.
DOI : 10.1046/j.1523-1747.2000.00884.x

A. Li, P. J. Simmons, and P. Kaur, Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype, Proc. Natl. Acad. Sci, pp.3902-3907, 1998.
DOI : 10.1111/j.1432-0436.1989.tb00740.x

N. O. Fortunel, J. A. Hatzfeld, P. A. Rosemary, C. Ferraris, M. N. Monier et al., Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-??1 concentrations, Journal of Cell Science, vol.116, issue.19, pp.4043-4052, 2003.
DOI : 10.1242/jcs.00702

H. Tani, R. J. Morris, and P. Kaur, Enrichment for murine keratinocyte stem cells based on cell surface phenotype, Proc. Natl. Acad. Sci, pp.10960-10965, 2000.
DOI : 10.1084/jem.175.6.1501

URL : http://www.pnas.org/content/97/20/10960.full.pdf

M. Ruetze, S. Gallinat, H. Wenck, W. Deppert, and A. Knott, In situ localization of epidermal stem cells using a novel multi epitope ligand cartography approach, Integrative Biology, vol.12, issue.5-6, pp.241-249
DOI : 10.1002/cyto.a.20281

P. H. Jones, S. Harper, and F. M. Watt, Stem cell patterning and fate in human epidermis, Cell, vol.80, issue.1, pp.83-93, 1995.
DOI : 10.1016/0092-8674(95)90453-0

URL : http://doi.org/10.1016/0092-8674(95)90453-0

S. Lowell, P. Jones, I. Le-roux, J. Dunne, and F. M. Watt, Stimulation of human epidermal differentiation by Delta???Notch signalling at the boundaries of stem-cell clusters, Current Biology, vol.10, issue.9, pp.491-500, 2000.
DOI : 10.1016/S0960-9822(00)00451-6

H. Wan, M. G. Stone, C. Simpson, L. E. Reynolds, J. F. Marshall et al., Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes, Journal of Cell Science, vol.116, issue.20, pp.4239-4248, 2003.
DOI : 10.1242/jcs.00701

J. Legg, U. B. Jensen, S. Broad, I. Leigh, and F. M. Watt, Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis, Development, vol.130, issue.24, pp.6049-6063, 2003.
DOI : 10.1242/dev.00837

K. B. Jensen, C. A. Collins, E. Nascimento, D. W. Tan, M. Frye et al., Lrig1 Expression Defines a Distinct Multipotent Stem Cell Population in Mammalian Epidermis, Cell Stem Cell, vol.4, issue.5, pp.427-439, 2009.
DOI : 10.1016/j.stem.2009.04.014

URL : http://doi.org/10.1016/j.stem.2009.04.014

K. B. Jensen and F. M. Watt, Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence, Proc. Natl. Acad. Sci, pp.11958-11963, 2006.
DOI : 10.1074/jbc.274.2.595

M. Barinaga, Fetal Neuron Grafts Pave the Way for Stem Cell Therapies, Science, vol.287, issue.5457, pp.1421-1422, 2000.
DOI : 10.1126/science.287.5457.1421

S. C. Dyson and R. A. Barker, Cell-based therapies for Parkinson???s disease, Expert Review of Neurotherapeutics, vol.27, issue.6, pp.831-844, 2011.
DOI : 10.1016/j.nbd.2007.03.015

G. Auyeung, C. Antonacci, and A. Buch, Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease, Nature, vol.480, pp.547-551, 2011.

Y. Takagi, J. Takahashi, H. Saiki, A. Morizane, T. Hayashi et al., Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model, Journal of Clinical Investigation, vol.115, issue.1, pp.102-109, 2005.
DOI : 10.1172/JCI21137

D. Solter, From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research, Nature Reviews Genetics, vol.122, issue.4, pp.319-327, 2006.
DOI : 10.1038/nrg1827

M. J. Cooke, M. Stojkovic, and S. A. Przyborski, Growth of Teratomas Derived from Human Pluripotent Stem Cells Is Influenced by the Graft Site, Stem Cells and Development, vol.15, issue.2, pp.254-259, 2006.
DOI : 10.1089/scd.2006.15.254

T. A. Prokhorova, L. M. Harkness, U. Frandsen, N. Ditzel, H. D. Schroder et al., Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel, Stem Cells and Development, vol.18, issue.1, pp.47-54, 2009.
DOI : 10.1089/scd.2007.0266

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

V. Pekarik and G. Tiscornia, Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes, Nat. Biotechnol, vol.26, pp.1276-1284, 2008.

K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, issue.5, pp.861-872, 2007.
DOI : 10.1016/j.cell.2007.11.019

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells, Nature, vol.62, issue.7151, pp.313-317, 2007.
DOI : 10.1038/nature05934

A. J. Gerrard, D. L. Hudson, G. G. Brownlee, and F. M. Watt, Towards gene therapy for haemophilia B using primary human keratinocytes, Nature Genetics, vol.227, issue.2, pp.180-183, 1993.
DOI : 10.1128/MCB.6.8.2895

R. Ruiz-de-gopegui, J. Montane, and S. Munoz, Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy, Diabetes, vol.62, pp.1718-1729, 2013.

F. Larcher, M. Del-rio, F. Serrano, J. C. Segovia, A. Ramirez et al., A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts, The FASEB Journal, vol.15, issue.9, pp.1529-1538, 2001.
DOI : 10.1096/fj.01-0082com

M. Cavazzana-calvo, S. Hacein-bey, G. De-saint-basile, F. Gross, E. Yvon et al., Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease, Science, vol.288, issue.5466, pp.669-672, 2000.
DOI : 10.1126/science.288.5466.669

A. Aiuti, A. C. Bachoud-levi, A. Blesch, M. K. Brenner, F. Cattaneo et al., Progress and prospects Gene Ther, Gene therapy clinical trials, vol.14, issue.2, pp.1555-1563, 2007.

A. Fischer, Gene therapy of inherited diseases, The Lancet, vol.371, issue.9629, pp.2044-2047, 2008.
DOI : 10.1016/S0140-6736(08)60874-0

H. B. Gaspar, K. L. Parsley, S. Howe, D. King, K. C. Gilmour et al., Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector, The Lancet, vol.364, issue.9452, pp.2181-2187, 2004.
DOI : 10.1016/S0140-6736(04)17590-9

S. Hacein-bey-abina, C. Von-kalle, M. Schmidt, M. P. Mccormack, N. Wulffraat et al., LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1, Science, vol.302, issue.5644, pp.415-419, 2003.
DOI : 10.1126/science.1088547

N. Cartier, S. Hacein-bey-abina, C. C. Bartholomae, G. Veres, M. Schmidt et al., Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy, Science, vol.116, issue.11, pp.818-823, 2009.
DOI : 10.1172/JCI28873

A. Aiuti, L. Biasco, S. Scaramuzza, F. Ferrua, M. P. Cicalese et al., Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome, Science, vol.177, issue.10, 2013.
DOI : 10.4049/jimmunol.177.10.7451

J. O. Andressoo, G. Weeda, J. De-wit, J. R. Mitchell, R. B. Beems et al., An Xpb Mouse Model for Combined Xeroderma Pigmentosum and Cockayne Syndrome Reveals Progeroid Features upon Further Attenuation of DNA Repair, Molecular and Cellular Biology, vol.29, issue.5, pp.1276-1290, 2009.
DOI : 10.1128/MCB.01229-08

S. G. Clarkson, The XPG story, Biochimie, vol.85, issue.11, pp.1113-1121, 2003.
DOI : 10.1016/j.biochi.2003.10.014

D. Boer, J. Donker, I. De-wit, J. Hoeijmakers, J. H. Weeda et al., Disruption of the mouse xeroderma pigmentosum group d DNA repair/basal transcription gene results in preimplantation lethality, Cancer Res, vol.58, pp.89-94, 1998.

G. A. Greenhaw, A. Hebert, M. E. Duke-woodside, I. J. Butler, J. T. Hecht et al., Xeroderma pigmentosum and cockayne syndrome: Overlapping clinical and biochemical phenotypes, Am. J. Hum. Genet, vol.50, pp.677-689, 1992.

C. Herlin, D. Sauniere, and D. Huertas, Xeroderma pigmentosum??: proposition th??rapeutique radicale utilisant le derme artificiel au niveau de la face, Annales de Chirurgie Plastique Esth??tique, vol.54, issue.6, pp.594-599, 2009.
DOI : 10.1016/j.anplas.2008.11.002

M. Carreau, X. Quilliet, E. Eveno, A. Salvetti, O. Danos et al., Functional retroviral vector for gene therapy of xeroderma pigmentosum group d patients. Hum. Gene Ther, pp.1307-1315, 1995.

X. Quilliet, O. Chevallier-lagente, E. Eveno, T. Stojkovic, A. Destee et al., Long-term complementation of DNA repair deficient human primary fibroblasts by retroviral transduction of the XPD gene, Mutation Research/DNA Repair, vol.364, issue.3, pp.161-169, 1996.
DOI : 10.1016/S0921-8777(96)00024-9

L. Zeng, X. Quilliet, O. Chevallier-lagente, E. Eveno, A. Sarasin et al., Retrovirus-mediated gene transfer corrects DNA repair defect of xeroderma pigmentosum cells of complementation groups A, B and C, Gene Therapy, vol.4, issue.10, pp.1077-1084, 1997.
DOI : 10.1038/sj.gt.3300495

S. Hadj-rabia, D. Oriot, N. Soufir, H. Dufresne, E. Bourrat et al., Unexpected extradermatological findings in 31 patients with xeroderma pigmentosum type C, British Journal of Dermatology, vol.130, issue.5, pp.1109-1113, 2013.
DOI : 10.1038/jid.2009.409

M. Frechet, E. Warrick, C. Vioux, O. Chevallier, A. Spatz et al., Overexpression of matrix metalloproteinase 1 in dermal fibroblasts from DNA repair-deficient/cancer-prone xeroderma pigmentosum group C patients, Oncogene, vol.14, issue.39, pp.5223-5232, 2008.
DOI : 10.1128/MCB.9.11.5169

Y. Gache, D. Pin, L. Gagnoux-palacios, C. Carozzo, and G. Meneguzzi, Correction of Dog Dystrophic Epidermolysis Bullosa by Transplantation of Genetically Modified Epidermal Autografts, Journal of Investigative Dermatology, vol.131, issue.10, pp.2069-2078, 2011.
DOI : 10.1038/jid.2011.172

C. Arnaudeau-begard, F. Brellier, O. Chevallier-lagente, J. Hoeijmakers, F. Bernerd et al., Genetic correction of DNA repair-deficient/cancer-prone xeroderma pigmentosum group c keratinocytes. Hum. Gene Ther, pp.983-996, 2003.

T. Magnaldo and Y. Barrandon, CD24 (heat stable antigen, nectadrin), a novel keratinocyte differentiation marker, is preferentially expressed in areas of the hair follicle containing the colony-forming cells, J. Cell Sci, vol.109, pp.3035-3045, 1996.

V. Bergoglio, F. Larcher, O. Chevallier-lagente, A. Bernheim, O. Danos et al., Safe Selection of Genetically Manipulated Human Primary Keratinocytes with Very High Growth Potential Using CD24, Molecular Therapy, vol.15, issue.12, pp.2186-2193, 2007.
DOI : 10.1038/sj.mt.6300292

J. F. Angulo, M. F. Avril, and A. Sarasin, Preclinical corrective gene transfer in xeroderma pigmentosum human skin stem cells, Mol. Ther, vol.20, pp.798-807, 2012.

M. B. Mathor, G. Ferrari, E. Dellambra, M. Cilli, F. Mavilio et al., Clonal analysis of stably transduced human epidermal stem cells in culture., Proc. Natl. Acad. Sci. USA 1996, pp.10371-10376
DOI : 10.1073/pnas.93.19.10371