P. Kannankeril, D. Roden, and D. Darbar, Drug-Induced Long QT Syndrome, Pharmacological Reviews, vol.62, issue.4, pp.760-81, 2010.
DOI : 10.1124/pr.110.003723

D. Roden, Cellular basis of drug-induced torsades de pointes, British Journal of Pharmacology, vol.91, issue.7, pp.1502-1509, 2008.
DOI : 10.1161/01.CIR.91.6.1799

J. Lupoglazoff, I. Denjoy, M. Berthet, N. Neyroud, L. Demay et al., Notched T Waves on Holter Recordings Enhance Detection of Patients With LQT2 (HERG) Mutations, Circulation, vol.103, issue.8, pp.1095-101, 2001.
DOI : 10.1161/01.CIR.103.8.1095

C. Graff, M. Andersen, J. Xue, T. Hardahl, J. Kanters et al., Identifying Drug-Induced Repolarization Abnormalities from Distinct ECG Patterns in Congenital Long QT Syndrome, Drug Safety, vol.6, issue.7, pp.599-611, 2009.
DOI : 10.1148/radiology.148.3.6878708

G. Malfatto, G. Beria, S. Sala, O. Bonazzi, and P. Schwartz, Quantitative analysis of T wave abnormalities and their prognostic implications in the idiopathic long QT syndrome, Journal of the American College of Cardiology, vol.23, issue.2, pp.296-301, 1994.
DOI : 10.1016/0735-1097(94)90410-3

S. Priori, A. Wilde, M. Horie, Y. Cho, E. Behr et al., APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF

J. Salem, J. Alexandre, A. Bachelot, and C. Funck-brentano, Influence of steroid hormones on ventricular repolarization, Pharmacology & Therapeutics, vol.167, pp.38-47, 2016.
DOI : 10.1016/j.pharmthera.2016.07.005

URL : https://hal.archives-ouvertes.fr/hal-01393416

I. Rodriguez, M. Kilborn, X. Liu, J. Pezzullo, and R. Woosley, Drug-Induced QT Prolongation in Women During the Menstrual Cycle, JAMA, vol.285, issue.10, pp.1322-1328, 2001.
DOI : 10.1001/jama.285.10.1322

H. Itoh, L. Crotti, T. Aiba, C. Spazzolini, I. Denjoy et al., The genetics underlying acquired long QT syndrome: impact for genetic screening, European Heart Journal, vol.37, issue.18, 2015.
DOI : 10.1093/eurheartj/ehv695

URL : https://academic.oup.com/eurheartj/article-pdf/37/18/1456/17356560/ehv695.pdf

A. Paulussen, R. Gilissen, M. Armstrong, P. Doevendans, P. Verhasselt et al., Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1 , and KCNE2 in drug-induced long QT syndrome patients, Journal of Molecular Medicine, vol.82, issue.3, pp.182-190, 2004.
DOI : 10.1007/s00109-003-0522-z

A. Pfeufer, S. Jalilzadeh, S. Perz, J. Mueller, M. Hinterseer et al., Common Variants in Myocardial Ion Channel Genes Modify the QT Interval in the General Population: Results From the KORA Study, Circulation Research, vol.96, issue.6, pp.693-701, 2005.
DOI : 10.1161/01.RES.0000161077.53751.e6

P. Yang, H. Kanki, B. Drolet, T. Yang, J. Wei et al., Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, pp.1943-1951, 2002.

J. Ghouse, C. Have, P. Weeke, B. Nielsen, J. Ahlberg et al., Rare genetic variants previously associated with congenital forms of long QT syndrome have little or no effect on the QT interval, European Heart Journal, vol.36, issue.37, pp.2523-2532, 2015.
DOI : 10.1093/eurheartj/ehv297

D. Arking, S. Pulit, L. Crotti, P. Van-der-harst, P. Munroe et al., Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization, Nature Genetics, vol.46, issue.8, pp.826-862, 2014.
DOI : 10.1161/01.CIR.88.2.782

N. Verweij, M. Leach, I. Isaacs, A. Arking, D. Bis et al., Twenty-eight genetic loci associated with ST-T-wave amplitudes of the electrocardiogram, Human Molecular Genetics, vol.25, issue.10, pp.2093-2103, 2016.
DOI : 10.1093/hmg/ddw058

P. Weeke, J. Delaney, J. Mosley, Q. Wells, S. Van-driest et al., QT variability during initial exposure to sotalol: experience based on a large electronic medical record, EP Europace, vol.15, issue.12, pp.1791-1798, 2013.
DOI : 10.1093/europace/eut153

URL : https://academic.oup.com/europace/article-pdf/15/12/1791/17428040/eut153.pdf

P. Weeke, J. Mosley, D. Hanna, J. Delaney, C. Shaffer et al., Exome Sequencing Implicates an Increased Burden of Rare Potassium Channel Variants in the Risk of Drug-Induced Long QT Interval Syndrome, Journal of the American College of Cardiology, vol.63, issue.14, pp.1430-1437, 2014.
DOI : 10.1016/j.jacc.2014.01.031

Y. Jamshidi, I. Nolte, C. Dalageorgou, D. Zheng, T. Johnson et al., Common Variation in the NOS1AP Gene Is Associated With Drug-Induced QT Prolongation and Ventricular Arrhythmia, Journal of the American College of Cardiology, vol.60, issue.9, pp.841-50, 2012.
DOI : 10.1016/j.jacc.2012.03.031

I. Splawski, K. Timothy, M. Tateyama, C. Clancy, A. Malhotra et al., Variant of SCN5A Sodium Channel Implicated in Risk of Cardiac Arrhythmia, Science, vol.297, issue.5585, pp.1333-1339, 2002.
DOI : 10.1126/science.1073569

S. Kääb, D. Crawford, M. Sinner, E. Behr, P. Kannankeril et al., A Large Candidate Gene Survey Identifies the KCNE1 D85N Polymorphism as a Possible Modulator of Drug-Induced Torsades de Pointes, Circulation: Cardiovascular Genetics, vol.5, issue.1, pp.91-100
DOI : 10.1161/CIRCGENETICS.111.960930

D. Roden, Drug-Induced Prolongation of the QT Interval, New England Journal of Medicine, vol.350, issue.10, pp.1013-1035, 2004.
DOI : 10.1056/NEJMra032426

Y. Yap and A. Camm, Drug induced QT prolongation and torsades de pointes, Heart, vol.89, issue.11, pp.1363-72, 2003.
DOI : 10.1136/heart.89.11.1363

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767957/pdf

. Dailymed, https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid= 6616d1a2-09a6-429c-8d19-0ac6354980bb. (Date of access, p.2906, 2016.