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Abstract. The venous circulation in the lower limb is mainly controlled by the muscular action of the
calf. To study the mechanisms governing the venous draining and filling process in such a situation, an
experimental setup, composed by a collapsible tube under external pressure, has been built. A valve pre-
venting back flows is inserted at the bottom of the tube and allows to model two different configurations:
physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions.
Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original
optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The ex-
perimental results (draining and filling with physiological or pathological valves) are confronted to a simple
one-dimensional numerical model which completes the physical interpretation. One major observation is
that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous
effects, and that a defect of the valve decreases, as expected, the ejected volume.

1 Introduction

Veins have flexible walls that can support, in normal situ-
ations like walking or breathing, high external pressures.
Veins are deformable, which means they may collapse
when the internal pressure falls below the external
pressure. Venous collapse is an important physiological
mechanism of the low leg blood circulation. Indeed, (i)
it helps the blood getting back to the heart and (ii) it
is one of the targets in the therapies for the prevention
and treatment of chronic venous insufficiency (CVI) and
deep venous thrombosis (DVT). Venous collapse results
from a complex nonlinear interaction between venous pres-
sure, blood flow rate and the mechanics of the vessel walls,
which can lead to a variety of phenomena, e.g., flow
limitation, self-oscillations or wave propagation.

Studies on collapsible tubes are an important element
of the venous vessels’ fluid dynamics and of the fluid-
structure interaction between blood flow and venous walls.
Experimental setups consisting in a collapsible tube un-
der external pressure provide a simple system allowing to
model and study blood flow. These experimental flows are
complex enough to describe properly the fluid-structure
interaction and nevertheless allow measuring the dynamic
variables (i.e., flow rate, tube area, internal and external
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pressures). In the area of theoretical developments, simple
one-dimensional mathematical models were shown to be
consistent with the experimental observations; Shapiro [1]
presented an analysis of the one-dimensional steady flow
through a collapsible tube (including friction, gravity and
variations of the external pressure), and many other works
proposed unsteady and steady numerical solutions of
one-dimensional flows [2–4].

The experimental flow analysis using collapsible tubes
has been developed simultaneously with the investigation
of biological flows, such as the venous blood flow, the pul-
monary air flow and the periodic external compression
(foot boots, breathing help). Numerous studies handle
with flow through elastic and collapsible tubes, applied,
for instance, to arteries, veins, bronchi or urethrae [3–8].
Phenomena like flow limitation in Starling resistor [9,10]
with a transition between super-critical and sub-critical
flow were observed. Indeed, almost all experimental setups
rely on the Starling classical setup consisting of a horizon-
tal tube with given external pressure since it allows the
emergence of super-critical phenomena. The influence of
time-dependent conditions is dealt with in [2,11,12]. Flow
separation near a constriction was studied numerically by
Cancelli and Pedley [13], Matsuzaki and Matsumoto [14]
and Ikeda and Matsuzaki [15]. Recent research provides
numerous examples of experimental studies about tube
oscillations [16–19].
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In medical applications, researchers did not pay much
attention to venous blood circulation partially because the
physiologists have long considered the venous network just
as a blood reservoir. Nevertheless, there is physiological
evidence that the mechanics of the solid-fluid coupling,
such as the muscular activity and its interaction with the
blood flow, or valve failure, have an important effect on
the blood circulation.

The muscular pump is the main mechanism explaining
the decrease of the ambulatory venous pressure (AVP).
The AVP is the principal functional index used to as-
sess the degree of malfunctioning of the lower leg venous
system: the pressure variations are recorded at the dis-
tal marginal vein (superficial veins located at the upper
surface of the foot) under muscular activity (i.e., walk-
ing, rising up tiptoe) and, in a healthy leg, the pressure
decreases with each muscular pumping cycle. When there
is a deficiency in the muscular pump or a valvular in-
continence, the AVP rises and produces an ambulatory
hyper-pressure and a short refilling time. The refilling
time, defined as the characteristic time required to reach
the AVP baseline after muscular activity, is another im-
portant marker of illness. In summary, in this context se-
vere illness is correlated with high AVP and with short
refilling time.

Muscular veins of the lower leg (which are inside mus-
cular compartments) support high external pressure when
the muscular pump is activated and they provide a good
framework to study, experimentally and numerically, the
nonlinear interactions between high external pressure and
venous flow. The diameters of the muscular veins are rel-
atively large compared to the typical vein diameters of
the lower leg, thus simplifying the dynamics similarity for
the experimental setup (because a large diameter allows
to adjust viscosity conveniently).

In this paper, we present an experimental setup to
model the draining and filling processes of the muscu-
lar veins of the lower leg: a collapsible tube was placed
vertically inside a hermetic chamber connected to a tank
with controlled air pressure. Inside the chamber, the tube
was surrounded by air. The controlled experimental setup
allows a very quick switch from high positive to nega-
tive transmural pressure1, as observed during muscular
activity.

The use of an electrovalve allows studying two modes
of draining and filling: the normal intramuscular venous
system function where the fluid flows only in the upper
direction, and a crude picture of the calf pump failure
that happens when the fluid flows in both directions. This
experimental setup provides a variety of interesting
phenomena observed in very viscous systems, such as
propagative waves or a quasi-steady draining. The ex-
perimental data were compared to the results of an one-
dimensional numerical model.

The paper is organized in three sections. Section 2
presents the experimental setup as well as the material
and the protocols used for pressure, flow rate and cross-

1 The “transmural pressure” is the difference between the
internal and the external pressures.
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Fig. 1. Scheme of the experimental setup composed of three
chambers: upper, central and bottom. The central chamber
contains a vertical collapsible tube that connects the upper and
the bottom chambers. The fluid is located in the hatched re-
gion. The pressure Pe(t) acts like the calf muscular pump. The
electrovalve (EV) controls the back flows into the secondary
circuit.

sectional area measurements. Section 3 presents the ex-
perimental results of the draining and the filling processes.
We use the numerical simulations in Section 4 to improve
the physical interpretations.

2 Experimentation

2.1 Experimental setup

Figure 1 shows the experimental setup, which consists of
three chambers, upper, central and bottom, with a col-
lapsible tube inside the central chamber that connects the
upper and the bottom chambers. The fluid is located in
the hatched region. A secondary circuit (on the left of
Fig. 1) directly links the upper and the bottom chambers.
The connection between both flow circuits is managed by
an electrovalve (EV) that controls the back flows.

The central chamber is hermetic and tight to air and
water; it is made in dural (an equilateral triangle of
100 mm of side length and of 2.5 mm of thickness) with
longitudinal windows of about 500 mm that allow measur-
ing the tube deformation. The area variations A(t) result
from the computation of the cross-sectional area of the
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tube by image processing. The windows are chemically
treated with black anodic oxidation to minimize the laser
reflections used in the area reconstruction protocol. The
central chamber is also connected to an external tank filled
with compressed air (Pe(t) in Fig. 1). This device controls
the pressure inside the chamber and thus outside the col-
lapsible tube. The external pressure Pe(t) was considered
a model of the intramuscular pressure during muscular
activity.

Inside the central chamber, a collapsible tube is at-
tached to rigid tubes of similar internal diameter. The
rigid tubes connect the collapsible tube to the top and the
bottom chambers respectively. In these two rigid tubes,
the pressures (Ptop and Pbot) and the flow rate (Qtop and
Qbot) were measured by pressure sensors and ultra-sound
(US) Doppler respectively.

The bottom chamber also includes an on-off
electrovalve EV to model the valvular system of the ve-
nous network. The electrovalve’s response time was mea-
sured to be less than 10 ms. According to the healthy
function of the intramuscular venous system, the “closed”
mode allows the fluid to flow only in the upper direction,
the bottom chamber being disconnected from the external
circuit. In the “open” mode, the experimental configura-
tion corresponds to the calf pump failure: the fluid can
flow in both directions.

The collapsible tube is placed vertically into the cen-
tral chamber and is L = 39 cm long. The relative position
of the two rigid tubes is adaptable; this mechanism al-
lows changing the longitudinal tube tension by its length
variation. The collapsible tube is made in natural rubber
obtained by molding, a technical procedure which ensures
a homogeneous thickness. We used several tubes of 8, 10
and 12 mm of diameter with variable thicknesses (2/10,
3/10 and 4/10 mm). These diameters and thicknesses were
chosen according to the dynamical similitude, as stated
above. The experimental results presented in this paper
correspond to a tube with diameter 12 mm and thickness
2/10 mm.

Table 1 presents the main characteristics of the
experimental configuration: L is the length of the
collapsible tube, Lt and Lb are the relative distances be-
tween the measuring points in the rigid tube and upper
and lower edges of the collapsible tube, A0 is the neu-
tral tube area (the cross-sectional area for zero transmural
pressure) and the last column gives the diameter of the
rigid tubes. The Reynolds number is in the range
1500–2000.

2.2 Measurement of the pressure

To measure the pressure under flow conditions, we used
a strain-gauge type of transducer (OMICRON, type
OMP02). The pressure applied on the membrane gener-
ates micro deformations inducing a resistance variation on
the strain-gauge and a signal that is proportional to the
pressure. The range of pressure measurements was from
0 to 100 kPa with a precision of 0.1%.

Table 1. Experimental data. Lt, L and Lb are the lengths in
cm.

Lt (cm) L (cm) Lb (cm) A0 (cm2) Rigid diameter (cm)

37.5 39 39.5 1.12 1.2

2.3 Measurement of the flow rate

Two US Doppler probes were placed in the top and
bottom chambers and connected to the two rigid tubes.
They were calibrated at constant flow rate using a DOP
1000 velocimeter and 5 MHz and 10 MHz probes. The
US Doppler measured the velocity at different radial po-
sitions and gave directly the velocity profile. Assuming an
axi-symmetric flow, we calculated the flow rate by a nu-
merical integration of the velocities measured in the prox-
imal half tube diameter, where the signal-to-noise ratio
level is satisfactory.

2.4 Fluid

The fluid used in the experiment is an aqueous solution
composed of glycerol at 60% and echogenic Rilsan parti-
cles of average diameter 20–30 μm in suspension. In pre-
liminary experiments of flow rate calibration using the US
Doppler (DOP 1000), we have found that for a concen-
tration of 140 mg/L of Rilsan particles we got a precise
evaluation of the velocity profile. The physical properties
of the fluid at ambient temperature were: a viscosity of
13 × 10−3 Pa s and a density of 1100 kg m−3. Recall that
blood viscosity range belongs to [4:100] × 10−3 Pa s. The
fluid fulfills the similarity requirements.

2.5 Optical device for area measurement

External to the central chamber an optical device includes
a thin laser sheet and three high-definition cameras (CCD).
The laser sheet intercepts the collapsible tube generating
the measured images. The cameras were put all in the
same horizontal plane and separated by 120◦. Each cam-
era was coupled to a polarimeter to adjust the contrast.
For a good reconstruction it was necessary, for each image,
to be placed in a plane that was perpendicular to the tube
axis. To take into account the image distortion induced by
the vertical angle between the camera and the tube axis, a
pre-calibrated grid with equi-spaced black points disposed
in two dimensions was put in that plane before every ex-
periment. In a post-treatment procedure the geometrical
relationships between the grid points gave the angular cor-
rections for each camera. The acquisition frequency was
chosen between 60 and 120 images/s depending on the
nature of the experiment. Data analysis of the three im-
ages including a fitting procedure allowed to compute the
tube area with an error of only a few square pixels. The
experimental measurements of cross-sectional area were
done in a static configuration (a filled elastic tube with no
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Fig. 2. Example of reconstructed images from the three CCD
cameras during a collapse process with increasing time from
top-left to bottom-right.

flow). This implies that the visco-elastic and the inertial
effects of the wall were neglected when we have built the
experimental tube law.

Figure 2 shows an example of the evolution in time of
the reconstructed cross-sectional area of the elastic tube
during a collapse process, with increasing time from top-
left to bottom-right. The cross-sectional area of the tube
depends on the transmural pressure (pi − pe). The tube
collapse follows a well-known dynamics from a slightly oval
cross-sectional area to a line contact.

We have compared these results with those obtained
by the ombroscopy technique. In this later technique, an
emitter sends a laser sheet in the tube direction. The re-
ceptor has a photosensitive cell that evaluates the shadow
zone delimited by the tube shape corresponding to the
tube apparent diameter. The area evaluation is obtained
by two orthogonal measurements of the minor Ds and the
major Dg tube apparent diameters. The value of the tube
area is then computed using the ellipticity hypothesis by
A = πDsDg/4.

At positive transmural pressure the tube is inflated and
the section is circular. In this case the two methods give
the same results. When the transmural pressure becomes
negative, the tube is partially collapsed. The area values
computed by the two methods present remarkable differ-
ences mainly beyond the contact point. The ellipticity hy-
pothesis breaks down when the lobes appear [20], and the
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A/A
0

CDD

Ombroscopy

Fig. 3. (Color online) Experimental tube law, pi − pe =
Fexp(A/A0) at negative transmural pressure. CCD camera (red
thick line) and ombroscopy (green thin line).

ombroscopy technique then overestimates the tube area.
This detail is critical for the numerical comparisons of the
experiment since it underestimates the viscous term of the
numerical model of Section 4, which is based on an eval-
uation of the cross-sectional area.

This appears clearly when we consider the tube law
Fexp, which links the nondimensional area A/A0 with the
transmural pressure pt = pi − pe = Fexp(A/A0), where
A0 is the cross-sectional area at zero transmural pres-
sure and pi is the internal pressure. In both cases, the
determination of Fexp was done at the middle height of
the tube, far enough of the fixed ends to eliminate po-
tential errors introduced by these fixations. A detail of
the tube law at negative transmural pressure obtained
with a CCD camera (red thick line) or ombroscopy (green
thin line) is shown in Figure 3; the difference between
the vertical axis and the asymptote of the area-pressure
relationship directly gives the minimum value of the
cross-sectional area when the tube is completely
collapsed.

The complete protocol of the procedure is described in
reference [21].

3 Experimental results and discussion

This section presents the experimental results of the model
(flexible tube subjected to high external pressure) of
draining and filling process in a muscular pump of the
lower leg.

We recall that in a normal configuration the venous
valves are continent and the blood flows a single direc-
tion, carrying the blood toward the heart. On the other
hand, in a pathological process, the venous valves are par-
tially open and the blood can flow in both directions. For
each situation, we present the experimental results of two
modes: (i) open (electrovalves open, a model of patholog-
ical process) and (ii) closed (electrovalves closed, a model
of normal or healthy process).

31101-p4
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3.1 Draining a tube

At the initial condition, the elastic tube is completely filled
and the system is in a static configuration, i.e., zero flow
rate and constant pressure. To start the process we set the
external pressure Pe(t) and we compute the velocities and
the pressures.

3.1.1 Draining open mode (pathological model)

Figure 4 presents the experimental results of the draining
process for the open mode: the fluid can flow toward the
top and bottom chambers from both sides of the collapsi-
ble tube. The results show

– (a) the pressures [kPa]: red thick line – external (ext),
green thin line – top tube (top) and blue dash line –
bottom tube (bot);

– (b) the flow rate [cm3/s]: top rigid tube (top) in green
thin line and bottom rigid tube (bot) in blue dash line;

– (c) the normalized tube volume V (t)
V (0) giving the ejected

fluid volume: top exit (top) in green thin line, bottom
exit (bot) in blue dash line and total ejected volume
(total) in red thick line. V (0) is the initial tube volume
and V (t) = Vt(t) + Vb(t), where Vt(t) is defined by
Vt(t) =

∫ t

0
Qt(t)dt (similarly for Vb(t)).

As stated above, before the activation of the external
pressure, between 0 and 0.5 s, the experimental system is
in a static configuration. Consequently, the pressure sen-
sors measure the hydrostatic pressure and the flow rate is
zero. We observe in Figure 4a that the difference of pres-
sures between the pressure sensors at the top and the bot-
tom rigid tubes is the hydrostatic pressure ρg(Lt+L+Lb).
At the initial time ti = 0.5 s, the external pressure is set
up and it reaches its maximum value of around 32 kPa at
t ∼ 6 s (in red thick line in Fig. 4a).

At ti, i.e., at the time when the external pressure is
applied, the fluid pressure inside the collapsible tube (in-
ternal pressure pi), which cannot be measured, increases
quasi-instantaneously by the same amount. First, the fluid
is accelerated by the pressure gradient which is nonzero
mainly at both ends of the elastic tube. Thus the flow rate
gradient is nonzero at the ends of the elastic tube. The
flow rate Q is related to the time derivative of the cross-
sectional area A by the continuity relation ∂xQ + ∂tA.
This explains why we observed, in the early stage of the
dynamics, the collapse at both ends of the elastic tube in
the zone of fluid acceleration.

The flow rate starts simultaneously with the tube’s
cross-sectional area decreasing near the ends of the tube,
as shown in Figure 4b for t = ti. The flow rates Qtop

and Qbot in Figure 4b have an abrupt peak at t = 0.7 s
(i.e., 0.2 s after the beginning of the process) and decrease
even though the external pressure is still rising. A sec-
ond peak appears at t = 1 s and at t = 2.1 s for the
top and the bottom flow rates, respectively. The top flow
rate behavior can be explained by the quick decrease of

 0

 10

 20

 30

 40

 0  2  4  6  8  10

Pr
es

su
re

 [
kP

a]

time [s]

P ext

P top

P bot

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0  2  4  6  8  10

Fl
ow

 r
at

e 
[c

m
3 /

s]

time [s]

Q top (O)

Q bot (O)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

V
/V

 to
ta

l

time [s]

top

bot

total

Fig. 4. (Color online) Experimental results of the draining
process, open mode (pathological model): (a) pressure (exter-
nal tank, top tube and bottom tube), (b) flow rate at top and
bottom rigid tubes and (c) the normalized tube volume.

the cross-sectional area in the upper part of the tube.
This collapsed zone then extends increasingly toward the
bottom, inducing more and more important viscous
losses.

During the draining process, we computed, from ex-
perimental data, the volume V (t) of the elastic tube as a
function of the time. Figure 4c presents the time evolution
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of the normalized tube’s volume V (t)/V (0) for the top side
(green thin line), the bottom side (blue dash line) and the
total (red thick line). We observe that the second peak
of each side arises when the corresponding ejected volume
reaches its limit, and that after t = 2.1 s the elastic tube
is quasi-empty.

3.1.2 Draining close mode (healthy model)

In the closed mode, the dynamics of the system behaves in
two particular ways: (i) when the external pressure ramp
is slow enough the system runs into a continuous evolu-
tion, the cross-sectional area becomes practically zero pro-
portionally to the pressure signal; (ii) when the pressure
ramp is more abrupt, a constriction zone appears near the
top end of the elastic tube and the dynamics is in essence
different.

Figure 5 presents the experimental results of the drain-
ing mode in a closed mode with an abrupt pressure ramp
and where the electrovalve at the bottom chamber has
been activated thus preventing the fluid to flow to the
secondary circuit (circuit parallel to the central chamber
in Fig. 1).

Experimental results show a very different behavior of
the pressure-time variation compared to the open mode
situation (Figs. 4a and 5a). The flow rate Qtop follows
a similar time evolution as in the open mode. Numer-
ical simulations in the same configuration presented in
Section 4 allow to compute the time evolution of both,
the flow rate and the cross-sectional area, and explain the
dynamic behavior.

3.2 Filling a tube

We present the experimental results of the filling process
of an elastic tube which is initially completely collapsed.
This condition is achieved by setting a high external pres-
sure Pe, representing the final state of the draining
process.

The elastic tube can be filled in by both ends (open
mode – pathological model) or by the top end (closed
mode – healthy model).

3.2.1 Filling open mode (pathological model)

The time evolution of the measured pressures is shown
in Figure 6a. We observe that the fluid does not flow
while the internal pressure at the top and the bottom ends
of the elastic tube does not exceed the reference pressure
given by the static configuration. Once the transmural
pressure becomes positive, the tube opens and the fluid
begins to flow, first at the bottom then at the top of the
tube.

The experimental data of the flow rate confirm that
the fluid starts to flow at the bottom of the elastic tube
(Fig. 6b). This is due to the positive transmural pressure
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Fig. 5. (Color online) Experimental results of the draining
process, closed mode (healthy model): (a) pressures (external
tank, top tube and bottom tube), (b) the flow rate at the top
and the bottom of the rigid tube and (c) the normalized tube
volume.

at the bottom end which is reached first due to the grav-
ity law. In the top chamber, we have La = 15 cm between
the free surface and the pressure sensor, hence the pres-
sure at the bottom of the upper rigid tube, ρg(La + Lt),
is around 5.14 kPa. For the bottom side the pressure is
found adding the tube length, which gives about 9 kPa.
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Fig. 6. (Color online) Experimental results of the filling
process, open mode (pathological model): (a) pressure (exter-
nal tank, top tube and bottom tube), (b) the flow rate at the
top and the bottom of the rigid tube and (c) the normalized
tube volume.

The time required for the external pressure to decrease
from the pressure at the bottom ∼9 kPa to the pressure at
the top (5.15 kPa) was about 1.2 s. This time variation cor-
responds to the difference between the two starting times
of the bottom and the top flow rates.

Unlike the draining process, there is only one peak for
each flow rate and they appear simultaneously.

3.2.2 Filling closed mode (healthy model)

Similarly to the open mode, the initial condition is an
empty elastic tube. Figure 7a presents the time evolution
of the three pressures: external tank, rigid top tube and
rigid bottom tube. Unlike the open mode, we can observe
that at t = 0 the signal of the bottom sensor does not
evaluate the static pressure. The empty tube acts like a
membrane and separates the bottom chamber from the
upper one. The upper chamber becomes isolated from the
external driving pressure and the inflated side of the elas-
tic tube behaves as semi-infinite dynamical system.

4 Numerical simulations

In this section we present the numerical model of a col-
lapsible tube used to add information to the physical un-
derstanding of the problem. We assume an unsteady,
incompressible one-dimensional flow through a collapsi-
ble tube; the variables are then the cross-sectional area A,
the average velocity U and the internal pressure pi.
The governing equations for the fluid flow are the con-
servation of mass [1]:

∂A

∂t
+

∂

∂x
(AU) = 0, (1)

and the momentum conservation

ρ
∂U

∂t
+ ρU

∂U

∂x
= −∂pi

∂x
− ρg − fv. (2)

The viscous loss effects are included in the last term fv. In
our computations we use the semi-analytical expressions
based on the thin-shell theory, given in [22]. The mechan-
ical characteristics of the tube are described by the exper-
imental tube law (see Sect. 2) that relates the transmural
pressure pt = pi − pe to the reduced cross-sectional area
A/A0. The experimental tube law is

pi − pe = Fexp(A/A0) − T/Rl, (3)

where T is the longitudinal tension and Rl is the local
longitudinal radius of curvature (positive when the tube
cross-section is concave outward). For a thin tube if the
fluid density is comparable with the tube density, the in-
ertia of the tube can be neglected [23]. The longitudinal
tension T is evaluated directly on the flexible tube by mea-
suring its longitudinal strain.

To close the system we define the boundary conditions
at the top (x = L) and at the bottom (x = 0) of the tube.
The velocities U(0) and U(L) are coupled to a model of
the hydraulic circuit. We introduce the mechanical prop-
erties of the rigid part of the system: the pressure drop
across the rigid tube is modeled by a resistive term and
an inertial term. The main contribution to the resistive
term is classically taken proportional to the square flow
rate, and the inertial one is the product of the effective
length and the fluid acceleration, thus for x = 0

p(0, t) = pR − ρLcircuit
dU

dt
(0, t) − kLcircuitρU2(0, t), (4)
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Fig. 7. (Color online) Experimental results of the filling
process, closed mode (healthy model): (a) pressure (external
tank, top tube and bottom tube), (b) the flow rate at the top
and the bottom rigid tube and (c) the normalized tube volume.

where pR = ρgLa is the reference pressure or the hydro-
static pressure difference between the free surface of the
reservoir at height La and the origin of the flexible tube,
the term Lcircuit is the equivalent length and k is a fric-
tion coefficient. The same equation holds for the bottom
side at x = L, where pR = ρg(La + Lt + L + Lb) and
Lcircuit includes the secondary circuit. The friction coef-
ficient k depends on the shape of the hydraulic circuit.

The numerical solutions are computed using a classical
integration scheme well adapted to hyperbolic problems.
The MacCormack scheme is a classical two-step predictor-
corrector technique, with the following characteristics: it
has explicitly conservative form, it is three points in space,
two levels in time and it is second order accurate in time
and space. An approximate solution is obtained in the
first step and then corrected in the second. A reference on
an evaluation/performance of the MacCormack scheme on
collapsible tubes is [24], which scheme was already used
on a similar problem [25].

In the following numerical simulations we use the ex-
perimental data of pressure pe(t) as an input to our
model (3). To compare the numerical and experimental
data, we select the numerical results at the corresponding
experimental measurement points, i.e., top and bottom of
the rigid tubes.

Moreover, the numerical data allow us to follow the
spatio-temporal dynamics of the cross-sectional area A
and the velocity U everywhere and compare them to the
specific points of the experimental data.

4.0.3 Draining open mode (pathological model)

Figure 8a shows the corresponding numerical solutions of
the time evolution of the tube shape in a draining mode.
We represent the tube shape for constant time intervals of
0.1 s starting from the initial condition t = ti to the sec-
ond peak observed in the measured flow rate at the bot-
tom of the tube for t ∼ 2.1 s (black dotted lines). The red
thick lines represent particular shapes for t = 0.5, 0.7, 1, 2
which are related to the experimental flow rate peaks of
Figure 4b. The elastic tube begins to collapse quickly be-
tween t = 0.5 s and t = 0.7 s, quasi-uniformly in terms of
pressure but not in terms of area because of the nonlinear
tube law.

At time t = 1 s a second peak appears in the top
flow rate Qtop. Figure 8b shows the comparison between
experimental data (black crosses and squares as in Fig. 4b)
and numerical simulations (red thick lines), the flow
rate peak at t = 1 s can be regarded as a consequence
of the quick area decrease. As above, this time can also
be considered as the starting point of the viscous dynam-
ics due to the collapsed region of the tube. At that mo-
ment, when the top flow rate stops, the small area of the
elastic tube at the upper side acts like a resistive zone and
the remaining fluid is forced to flow to the bottom of
the elastic tube. At time t = 2.1 s, a second peak ap-
pears in the flow rate at bottom Qbot; Figure 8a and b
shows that a second zone of viscous dynamics is set up
by the narrowing of the elastic tube near the bottom.
After t = 2.1 s, when oscillations appear in experi-
mental results, the dynamics follows a viscous draining.
Numerical oscillations in the viscous draining are larger
than those observed in experimental data; we recall that
the numerical model is parameter free, and we use the nu-
merical solution as black box to understanding the
dynamics.
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Fig. 8. (Color online) (a) Numerical results of the draining
process. Tube shape (cross-sectional area) at different times.
(b) Comparison between experimental data and numerical sim-
ulations: flow rate as a function of time. (See Fig. 4b for
details.)

4.0.4 Draining close mode (healthy model)

Figure 9a presents the numerical results of the time evo-
lution of the cross-sectional area of the elastic tube of a
draining process in closed mode. We keep the definitions
of Figure 8 to compare both tube dynamics, so we present
the tube shape for constant time intervals of 0.1 s (black
dotted lines) and the particular states at times 0.5, 0.7, 1
and 2 in red thick lines.

The first two phases of the collapse process are equiva-
lent and after the second peak at time t = 1.1 s the upper
zone of the tube is dominated by the viscous effects that
determine the beginning of the viscous drainage, in which
the fluid is locked at the lower part of the elastic tube and
is slowly squeezed out. The length of the collapsed region
increases very slowly and at time t = 10 s the elastic tube
has lost less than 30% of its initial volume. Experimen-
tal evidence is given in Figure 5c and numerical data are
presented in Figure 9a.

The solution of the numerical integration of the veloc-
ities of Figure 9a presented in Figure 9b gives the nor-
malized tube volume, which is coherent with our lumped
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Fig. 9. (Color online) (a) Area as a function of time in a
draining process. Close mode. (b) Normalized volume from the
numerical data and scaling in t1/2.

model prediction (cf. end of this section) and shows that
after a few seconds the residual volume is about 70%, as
experimentally observed.

We now attempt to model the asymptotic evolution
of this volume variation. We roughly modeled the viscous
process by using a lumped model consisting of a very vis-
cous region of length l(t) and constant area a1 connected
with an inflated region of constant area a2 with initial
volume Vi (see Fig. 10). The flow rate Q of the system
results from the balance between the pressure difference
and the viscous forces under the assumption that the fluid
flow can be treated as a Poiseuille flow in a circular tube.
The momentum equation gives the simple governing
equation:

(Δp − ρgl(t))
l(t)

∼ K(a1)μQ/a2
1, (5)

where μ is the coefficient of viscosity, Δp = Pe − patm is
the external pressure drop acting on the collapsed part,
Pe is the external pressure and patm is the outlet pressure
at the top of the upper tube (the atmospheric pressure).
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Fig. 10. Simple lumped model of the viscous process. A flexi-
ble tube of length l(t) and cross-sectional area a1 is connected
to a volume V (t) with characteristic cross-sectional area a2.
Under the external pressure pe(t) the length l(t) moves down
giving a rate of volume −dV

dt
.

The coefficient K(a1) depends on the shape of the tube
cross-section, i.e., its value is 8π for a circular tube. The
temporal volume variation into the draining chamber is
given by

a2
dl

dt
= −dV

dt
. (6)

The mass conservation gives dV
dt = Q(t) and combining

the last three equations we get the following differential
equation for the time variation of the length l(t):

l(t)
(Δp − gl(t))

dl

dt
= − a2

1

K(a1)μa2
. (7)

Since Δp � gl(t), the scaling law for l(t) follows:

l(t)2 ∼ − 2Δpa2
1

K(a1) μa2
t + C, (8)

therefore l scales as t1/2, and finally, from equation (5),
Q ∼ t−1/2 holds. This scaling law was already found in [11]
from a nonlinear diffusion equation combining moment
and mass conservation.

Nevertheless, this simple model cannot explain the
short time behavior for the following reasons: (i) for the
small values of l(t), the pressure drop cannot be approxi-
mated by the Poiseuille law, the length of the tube is too
small to observe a fully developed flow; (ii) the quick vari-
ation of the flow rate from its peak to a lower value is not

consistent with the assumption of a quasi-stationary flow;
(iii) the section of the upper part of the tube cannot be
considered as a constant.

Figure 9b shows the time variation of the normalized
volume obtained by integration of the numerical results
presented in Figure 9a. After the rapid transient, the sys-
tem is governed by the viscous dynamics and the scaling
law infers that the tube volume decreases as t1/2 (dotted
line superposed over the normalized volume).

Note that there is no scaling plot for experimental data
since the flow rate measurement technique does not allow
one to assess velocities lower than 2 cm/s.

4.0.5 Filling open mode (pathological model)

Figure 11a shows the numerical shape of the cross-
sectional area from 1.2 s to the peak time in the flow
rate (marked by the red thick line on the figure).
We observe that the flow inflates progressively at both
tube edges and that the cross-sectional area increases
are well correlated with the flow rate. We observe
two dynamical fronts (from the bottom to the top
and conversely) separating the inflated and the collapsed
regions. When both fronts get in contact, the flow rate
falls down and the elastic tube blows up rapidly
reaching the final shape with some superimposed
oscillations decaying in time. We can track the front
dynamics as a function of time by plotting the succes-
sive positions of a specific point (in this case, for the re-
duced values cross-sectional area equal to 0.5). Figure 11b
presents the time evolution of these points starting from
the top and the bottom of the elastic tube. The slope of
the curves gives information about the front velocity: front
velocities are not constant and both fronts accelerate right
before contact.

The volume variation in the open filling mode (Fig. 6c)
is similar to that observed in the draining case (Fig. 4c).
We observe a saturation of the ejected volume that follows
the flow rate peaks.

The numerical results of Figure 12a show that the
cross-sectional area shape of the filling process showed in
Figure 12a moves exactly with the same time evolution as
the upper area in Figure 11a. The peak in the flow rate
appears when the front reaches the end side at the bottom
of the elastic tube. This travel difference explains the time
shift between the peaks of the flow rate at the top exit
(Fig. 6b).

Figure 12b superposes both front dynamics for the up-
per side (open and closed modes): observe that the two
fronts coincide exactly, that is, until the information has
not reached the other side (a front coming from the bot-
tom or from the boundary conditions) the system behaves
like in a semi-infinite configuration.

4.0.6 Oscillations

Experimental observations show an oscillating state at the
end of the draining (open mode) as well as in the filling

31101-p10



P. Flaud et al.: Experiments of draining and filling processes in a collapsible tube

bottom

top

 0  0.5  1  1.5  2

A/A
0

filling - on

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

time [s]

bot - on
top - on

Fig. 11. (Color online) (a) Numerical cross-sectional area as
a function of time for a filling process in open mode. The red
thick line marks the cross-sectional area at the flow rate peak.
(b) Front dynamics: point trajectories into a space-time dia-
gram of two particular cross-sectional area positions as a func-
tion of time.

(open and closed modes) process (the flow rate of Figs. 4
and 6 is presented in a zoomed Fig. 13).

The tube is either completely filled or empty and the
fluid inside oscillates. The fluid is coupled with the hy-
draulic system composed by both chambers (top and bot-
tom) and the secondary circuit. The hydraulic system
consists of inertive-resistive elements and a capacitor. The
flow peaks excite the coupled system and cause the replay
at a frequency determined by the inertance and the ca-
pacitance of the elements.

A simple study of linear stability of the isolated col-
lapsible tube allows to understand the phenomenon, we
note that this study is relevant only if the wavelength is
smaller than the typical length scale variation [26]. We
start with the governing equations (1) and (2) where we
replace −fv by −Ru for the sake of simplicity. By analyz-
ing the stability to the first order around an equilibrium
position (A0, U0, p0), we find A = A0 +α, U = U0 +u and
p = pe + p, where α = A/A0. Replacing them in the gov-
erning equations we get a first approximation (dropping

bottom

top

 0  0.5  1  1.5  2

A/A
0

filling - on

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

time [s]

top - on
top - off

Fig. 12. (Color online) (a) Numerical cross-sectional area as
a function of time for a filling process in open mode. (b) Front
dynamics: fixed cross-sectional area positions as a function of
time for open and closed modes.

the quadratic terms):

αt + U0αx + A0ux = 0, (9)
ut + U0ux = −px − Ru, (10)
p = F ′(A/A0)α − Tαxx. (11)

Setting F ′(A/A0) ∼ c0, u1 = ûei(kx−ωt) and α1 =
α̂ei(kx−ωt), and noting that the time derivatives are re-
placed by −iω and the space derivatives by ik we have
the following system:

(
k u0 − ω a0k

k3T + c2
0k
a0

−i R − ω + k u0

)(
α̂
û

)

=
(

0
0

)

.

The necessary condition for a solution is that the deter-
minant of the matrix is zero, thus giving the following
complex equation for ω as a function of k:

−a0k
4T + iωR − iku0R + ω2

−2ku0ω + k2u0
2 − c0

2k2 = 0.
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Fig. 13. (Color online) Experimental data: detail of oscillating
flow rates for (a) draining and (b) filling.

The imaginary part of ω, ωi, governs the wave dynamics;
waves will grow or decay with ωi > 0 or ωi < 0. For T �= 0
and R �= 0 we have

ω

k
= u0 ±

√

c0
2 + a0k2T − R2

2k2
− i

R

2k
.

Therefore, the longitudinal tension T is in competition
with the frictional forces R. The waves decay in time
and, for small T , they no longer exhibit the oscillatory
behavior.

Even though one would logically expect a nonoscilla-
tory wave decay for T → 0, numerical solutions show that
it is observable only for the draining process; the filling
process (open and close modes) decays always with finite
oscillatory waves.

Such different dynamics could be explained by the ra-
tio between the fluid volume of the elastic tube and of
the hydraulic system (top and bottom chambers and sec-
ondary circuit). The final state for the filling process is
an elastic inflated tube of a fluid volume of about A ×
L ∼ 58 cm3. That volume is large enough and then, the
added mass excites the hydraulic system and dominates

the oscillatory behavior. In addition, there are very small
viscous effects on the elastic tube.

Conversely, in the draining process, the final volume
is around 30 times smaller because the tube is collapsed
(hence with high viscous effects). Under such condition,
the empty tube could be considered independent from the
hydraulic system and the stability analysis holds.

5 Conclusion

We have developed a complex experimental setup model-
ing the venous flow through muscular veins. The optical
reconstruction technique allows to evaluate with good pre-
cision the cross-sectional area of the elastic tubes. Com-
parisons made with a classical ombroscopy reconstruction
show that our approach improves the results, especially
in the narrow sections when the elastic tube is collapsed.
The evaluation of the cross-sectional area in that situ-
ation is crucial to understand the dynamical behavior of
the viscous dynamics. On the other hand, since the numer-
ical simulation depends on the quality of the experimental
tube law, for high negative transmural pressure, numerical
simulations using the ombroscopy results cannot correctly
describe the viscous dynamics.

The numerical results from a simple 1D model led to
a good understanding of the experimental data, which are
quite complex. We recall that the numerical model is pa-
rameter free and is able to follow the flow dynamics at any
time (peaks, total volume, scaling).

Comparisons between experimental and numerical
data show that the ejected volume is roughly the same in
open and closed modes when the tube is draining
(see Figs. 4c and 5c). This means that the valve behav-
ior has little influence, due perhaps to the tube length
(∼40 cm); instead, for physiological lengths (i.e., shorter
than 40 cm), it is possible that the wave reflections and
back flows hide that phenomenon. Moreover, in draining-
filling cycles as in breath or muscular pumping, the valve
failure is only actually seen at the end of the process (re-
call the AVP definition in Sect. 1), so it seems that these
facts have to be correlated with the physiological data.

We have also presented a lumped model that describes
the viscous dynamics of the system, in particular the scal-
ing law of the volume dynamics (∼1/2). In the front dy-
namics for the upper side (open and closed modes) we
remark that the two fronts superpose. Consequently, there
is a short time where the system behaves like an infinite
tube as expected in a wave-like system. Finally, a stabil-
ity analysis allows to find the experimental observations:
when the volume of the secondary circuit is large enough
the added mass excites the hydraulic system that domi-
nates the oscillatory behavior; the viscous effects on the
elastic tube are not important enough to slow down the
perturbation.
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