N. Kamada, Y. Kim, and H. Sham, Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota, Science, vol.175, issue.10, pp.1325-1334, 2012.
DOI : 10.4049/jimmunol.175.10.6900

S. Wiles, K. Pickard, and K. Peng, In Vivo Bioluminescence Imaging of the Murine Pathogen Citrobacter rodentium, Infection and Immunity, vol.74, issue.9, pp.5391-5397, 2006.
DOI : 10.1128/IAI.00848-06

N. Segata, J. Izard, and L. Waldron, Metagenomic biomarker discovery and explanation, Genome Biology, vol.12, issue.6, pp.60-75, 2011.
DOI : 10.1101/gr.112730.110

URL : http://doi.org/10.1186/gb-2011-12-6-r60

X. Morgan, T. Tickle, and H. Sokol, Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biology, vol.13, issue.9, pp.79-95, 2012.
DOI : 10.1186/gb-2011-12-6-r60

URL : https://hal.archives-ouvertes.fr/hal-00736429

E. Kaoutari, A. Armougom, F. Raoult, and D. , Gut microbiota and digestion of polysaccharides, Med Sci : M/S, vol.30, pp.259-65, 2014.

S. Macfarlane and G. Macfarlane, Regulation of short-chain fatty acid production, Proceedings of the Nutrition Society, vol.3, issue.01, pp.67-72, 2003.
DOI : 10.1111/j.1365-2672.1991.tb02739.x

S. Ghosh, C. Dai, and K. Brown, Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression, AJP: Gastrointestinal and Liver Physiology, vol.301, issue.1, pp.39-49, 2011.
DOI : 10.1152/ajpgi.00509.2010

L. Bry, M. Brigl, and M. Brenner, CD4+-T-Cell Effector Functions and Costimulatory Requirements Essential for Surviving Mucosal Infection with Citrobacter rodentium, Infection and Immunity, vol.74, issue.1, pp.673-81, 2006.
DOI : 10.1128/IAI.74.1.673-681.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1346620

C. Maaser, M. Housley, and M. Iimura, Clearance of Citrobacter rodentium Requires B Cells but Not Secretory Immunoglobulin A (IgA) or IgM Antibodies, Infection and Immunity, vol.72, issue.6, pp.3315-3339, 2004.
DOI : 10.1128/IAI.72.6.3315-3324.2004

G. Pickert, C. Neufert, and M. Leppkes, STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, The Journal of Experimental Medicine, vol.161, issue.7, pp.1465-72, 2009.
DOI : 10.1038/nm1720

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715097/pdf

S. Rutz, C. Eidenschenk, and W. Ouyang, IL-22, not simply a Th17 cytokine, Immunological Reviews, vol.105, issue.1, pp.116-148, 2013.
DOI : 10.1073/pnas.0712102105

G. Sonnenberg, L. Fouser, and D. Artis, Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22, Nature Immunology, vol.148, issue.5, pp.383-90, 2011.
DOI : 10.1164/ajrccm/148.6_Pt_1.1523

C. Stelter, R. Käppeli, and C. König, Salmonella-Induced Mucosal Lectin RegIII?? Kills Competing Gut Microbiota, PLoS ONE, vol.99, issue.6, pp.20749-20775, 2011.
DOI : 10.1371/journal.pone.0020749.s002

URL : http://doi.org/10.1371/journal.pone.0020749

H. Ishigame, S. Kakuta, and T. Nagai, Differential Roles of Interleukin-17A and -17F in Host Defense against Mucoepithelial Bacterial Infection and Allergic Responses, Immunity, vol.30, issue.1, pp.108-127, 2009.
DOI : 10.1016/j.immuni.2008.11.009

Y. Zheng, P. Valdez, and D. Danilenko, Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nature Medicine, vol.151, issue.3, pp.282-291, 2008.
DOI : 10.4049/jimmunol.172.5.2827

B. Willing, A. Vacharaksa, and M. Croxen, Altering Host Resistance to Infections through Microbial Transplantation, PLoS ONE, vol.12, issue.10, 2011.
DOI : 10.1371/journal.pone.0026988.s004

URL : http://doi.org/10.1371/journal.pone.0026988

I. Ivanov, K. Atarashi, and N. Manel, Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria, Cell, vol.139, issue.3, pp.485-98, 2009.
DOI : 10.1016/j.cell.2009.09.033

H. Hara, C. Ishihara, and A. Takeuchi, The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors, Nature Immunology, vol.428, issue.6, pp.619-648, 2007.
DOI : 10.4049/jimmunol.169.7.3863

M. Barthel, S. Hapfelmeier, and L. Quintanilla-martínez, Pretreatment of Mice with Streptomycin Provides a Salmonella enterica Serovar Typhimurium Colitis Model That Allows Analysis of Both Pathogen and Host, Infection and Immunity, vol.71, issue.5, pp.2839-58, 2003.
DOI : 10.1128/IAI.71.5.2839-2858.2003

J. Tap, J. Furet, and M. Bensaada, Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults, Environmental Microbiology, vol.334, issue.12, pp.4954-64, 2016.
DOI : 10.1126/science.1208344

URL : https://hal.archives-ouvertes.fr/hal-01439024

J. Tomas, L. Wrzosek, and N. Bouznad, Primocolonization is associated with colonic epithelial maturation during conventionalization, The FASEB Journal, vol.27, issue.2, pp.645-55, 2013.
DOI : 10.1096/fj.12-216861

URL : https://hal.archives-ouvertes.fr/hal-01003327

H. Sokol, K. Conway, and M. Zhang, Card9 Mediates Intestinal Epithelial Cell Restitution, T-Helper 17 Responses, and Control of Bacterial Infection in Mice, Gastroenterology, vol.145, issue.3, pp.591-601, 2013.
DOI : 10.1053/j.gastro.2013.05.047

URL : https://hal.archives-ouvertes.fr/hal-00830742

B. Lamas, M. Richard, and V. Leducq, CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands, Nature Medicine, vol.3, issue.6, pp.598-605, 2016.
DOI : 10.1373/clinchem.2004.037465

URL : https://hal.archives-ouvertes.fr/hal-01314089

R. Schmieder and R. Edwards, Quality control and preprocessing of metagenomic datasets, Bioinformatics, vol.27, issue.6, pp.863-867, 2011.
DOI : 10.1093/bioinformatics/btr026

T. Mago? and S. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, vol.27, issue.21, pp.2957-63, 2011.
DOI : 10.1093/bioinformatics/btr507

J. Caporaso, J. Kuczynski, and J. Stombaugh, QIIME allows analysis of high-throughput community sequencing data, Nature Methods, vol.8, issue.5, pp.335-341, 2010.
DOI : 10.1038/nmeth.f.303

R. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, issue.19, pp.2460-2461, 2010.
DOI : 10.1093/bioinformatics/btq461

URL : https://academic.oup.com/bioinformatics/article-pdf/26/19/2460/16896486/btq461.pdf

D. Mcdonald, M. Price, and J. Goodrich, An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea, The ISME Journal, vol.180, issue.3, pp.610-618, 2012.
DOI : 10.1038/nature08656

B. Bolstad, R. Irizarry, and M. Astrand, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, vol.19, issue.2, pp.185-93, 2003.
DOI : 10.1093/bioinformatics/19.2.185

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, pp.3-13, 2004.
DOI : 10.2202/1544-6115.1027

D. Huang, W. Sherman, B. Lempicki, and R. , Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.6026/97320630002428

D. Huang, W. Sherman, B. Lempicki, and R. , Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.37, issue.1, pp.1-13, 2009.
DOI : 10.1093/nar/gkn923

. Erysipelotrichaceae-sp and . Sutterella-sp, Anaerofustis sp. Bacteroidales ; other o. Lachnospiraceae ; other Rikenellaceae f. Rikenellaceae sp. Rikenellaceae ; other Ruminococcus gnavus Anaerotruncus sp

L. Sp, Coprococcus sp. Peptococcaceae sp. Clostridiales ; other o