M. Yasuyuki, K. Kunihiro, S. Kurissery, N. Kanavillil, Y. Sato et al., Antibacterial Properties of Nine Pure Metals: A Laboratory Study Using Staphylococcus Aureus and Escherichia Coli, Biofouling, issue.7, pp.26-851, 2010.

C. Nayral, E. Viala, P. Fau, F. Senocq, J. Jumas et al., Chaudret, B. Synthesis of Tin and Tin Oxide Nanoparticles of Low Size Dispersity for Application in Gas Sensing, p.4090, 2000.

A. Bhattacharjee and M. Ahmaruzzaman, quantum dots (via a green route) under direct sunlight, RSC Adv., vol.4, issue.81, pp.66122-66133
DOI : 10.1039/C4RA10397A

S. Hermans, R. Raja, J. M. Thomas, B. F. Johnson, G. Sankar et al., Solvent-Free, Low-Temperature, Selective Hydrogenation of Polyenes Using a Bimetallic Nanoparticle Ru?Sn Catalyst, Angew. Chem. Int. Ed, issue.7, pp.40-1211, 2001.

L. Bazin, S. Mitra, P. L. Taberna, P. Poizot, M. Gressier et al., High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries, Journal of Power Sources, vol.188, issue.2, pp.578-582, 2009.
DOI : 10.1016/j.jpowsour.2008.12.025

URL : http://oatao.univ-toulouse.fr/3783/1/Bazin_3783.pdf

J. Hassoun, A. Fernicola, M. A. Navarra, S. Panero, and B. Scrosati, An advanced lithium-ion battery based on a nanostructured Sn???C anode and an electrochemically stable LiTFSi-Py24TFSI ionic liquid electrolyte, Journal of Power Sources, vol.195, issue.2, pp.574-579, 2010.
DOI : 10.1016/j.jpowsour.2009.07.046

S. Naille, C. M. Ionica-bousquet, F. Robert, F. Morato, P. Lippens et al., Sn-based intermetallic materials, Journal of Power Sources, vol.174, issue.2, pp.1091-1094, 2007.
DOI : 10.1016/j.jpowsour.2007.06.040

URL : https://hal.archives-ouvertes.fr/hal-00355246

H. Groult, H. Ghallali, A. Barhoun, E. Briot, C. M. Julien et al., Study of Co???Sn and Ni???Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery, Electrochimica Acta, vol.56, issue.6, pp.56-2656, 2011.
DOI : 10.1016/j.electacta.2010.12.015

URL : https://hal.archives-ouvertes.fr/hal-00825164

M. Winter and J. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochimica Acta, vol.45, issue.1-2, pp.31-50, 1999.
DOI : 10.1016/S0013-4686(99)00191-7

D. Bresser, F. Mueller, D. Buchholz, E. Paillard, and S. Passerini, Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes, Electrochimica Acta, vol.128, pp.163-171, 2014.
DOI : 10.1016/j.electacta.2013.09.007

R. Mukherjee, R. Krishnan, T. Lu, and N. Koratkar, Nanostructured electrodes for high-power lithium ion batteries, Nano Energy, vol.1, issue.4, pp.518-533
DOI : 10.1016/j.nanoen.2012.04.001

A. S. Aricò, P. Bruce, B. Scrosati, J. Tarascon, and W. Van-schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nature Materials, vol.351, issue.9, pp.366-377, 2005.
DOI : 10.1063/1.1534415

Z. Peng and H. Yang, Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property, Nano Today, vol.4, issue.2, pp.143-164, 2009.
DOI : 10.1016/j.nantod.2008.10.010

X. Wang, J. Zhuang, Q. Peng, and Y. Li, A general strategy for nanocrystal synthesis, Nature, vol.270, issue.7055, pp.437-121, 2005.
DOI : 10.1002/anie.200353212

Y. Wang and Y. Xia, Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals, Nano Letters, vol.4, issue.10, pp.2047-2050, 2004.
DOI : 10.1021/nl048689j

N. N. Mallikarjuna and R. S. Varma, Microwave-Assisted Shape-Controlled Bulk Synthesis of Noble Nanocrystals and Their Catalytic Properties, Crystal Growth & Design, vol.7, issue.4, pp.686-690, 2007.
DOI : 10.1021/cg060506e

N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template, Advanced Materials, vol.13, issue.18, pp.13-1389, 2001.
DOI : 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F

Z. Niu and Y. Li, Removal and Utilization of Capping Agents in Nanocatalysis, Chemistry of Materials, vol.26, issue.1, pp.72-83
DOI : 10.1021/cm4022479

M. D. Becker, Y. Wang, K. D. Pennell, and L. M. Abriola, A multi-constituent site blocking model for nanoparticle and stabilizing agent transport in porous media, Environ. Sci.: Nano, vol.30, issue.2, pp.155-166
DOI : 10.1021/la501006p

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chemical Reviews, vol.99, issue.8, pp.2071-2084, 1999.
DOI : 10.1021/cr980032t

M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou, Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures, Angew. Chem. Int. Ed, issue.38, pp.43-4988, 2004.

K. Ueno and M. Watanabe, From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media, Langmuir, vol.27, issue.15, pp.9105-9115, 2011.
DOI : 10.1021/la103942f

P. Migowski, G. Machado, S. R. Texeira, M. C. Alves, J. Morais et al., Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids, Physical Chemistry Chemical Physics, vol.71, issue.34, pp.9-4814, 2007.
DOI : 10.1039/b703979d

E. Redel, R. Thomann, and C. Janiak, First Correlation of Nanoparticle Size-Dependent Formation with the Ionic Liquid Anion Molecular Volume, Inorganic Chemistry, vol.47, issue.1, pp.14-16, 2008.
DOI : 10.1021/ic702071w

P. Alexandridis, Nanoparticles in Ionic Liquids: Interactions and Organization, Phys. Chem. Chem. Phys, vol.2015, issue.28, pp.17-18238

J. N. Canongia-lopes and A. A. Padua, Nanostructural Organization in Ionic Liquids, The Journal of Physical Chemistry B, vol.110, issue.7, pp.3330-3335, 2006.
DOI : 10.1021/jp056006y

URL : https://hal.archives-ouvertes.fr/hal-00202031

A. A. Ayi, V. Khare, P. Strauch, J. Girard, K. M. Fromm et al., On the chemical synthesis of titanium nanoparticles from ionic liquids, Monatshefte f??r Chemie - Chemical Monthly, vol.24, issue.19
DOI : 10.1021/ja067422e

R. A. Brand, WinNormos Mössbauer Fitting Program, 2008.

X. Qiu, J. W. Thompson, and S. J. Billinge, : a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, Journal of Applied Crystallography, vol.37, issue.4, pp.678-678, 2004.
DOI : 10.1107/S0021889804011744

S. Chaudhuri, P. Chupas, B. J. Morgan, P. A. Madden, and C. P. Grey, An Atomistic MD Simulation and Pair-Distribution-Function Study of Disorder and Reactivity of ??-AlF3 Nanoparticles., ChemInform, vol.8, issue.3, pp.5045-5055, 2006.
DOI : 10.1002/chin.200703002

D. Dambournet, M. Duttine, K. W. Chapman, A. Wattiaux, O. Borkiewicz et al., Resolving and Quantifying Nanoscaled Phases in Amorphous FeF3 by Pair Distribution Function and Mössbauer Spectroscopy, J. Phys. Chem. C, vol.2014, issue.25, pp.118-14039

N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher et al., Powders for Li-Ion Battery Applications, Chemistry of Materials, vol.21, issue.6, pp.1096-1107, 2009.
DOI : 10.1021/cm803259x

URL : https://hal.archives-ouvertes.fr/hal-00424305

C. D. Wagner and G. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, 1979.

S. Seo, J. Park, and Y. Kang, Chemical Analysis of Ionic Liquids Using Photoelectron Spectroscopy, Bulletin of the Korean Chemical Society, vol.3, issue.3, pp.355-360
DOI : 10.1002/sia.740030506

M. Neouze, About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials, Journal of Materials Chemistry, vol.126, issue.314, pp.9593-9607, 2010.
DOI : 10.1016/j.ica.2010.1002.1001

H. S. Schrekker, M. A. Gelesky, M. P. Stracke, C. M. Schrekker, G. Machado et al., Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles, Journal of Colloid and Interface Science, vol.316, issue.1, pp.316-189, 2007.
DOI : 10.1016/j.jcis.2007.08.018

H. Zhang and H. Cui, Synthesis and Characterization of Functionalized Ionic Liquid-Stabilized Metal (Gold and Platinum) Nanoparticles and Metal Nanoparticle/Carbon Nanotube Hybrids, Langmuir, vol.25, issue.5, pp.2604-2612, 2009.
DOI : 10.1021/la803347h

J. Li, J. ?wiatowska, V. Maurice, A. Seyeux, L. Huang et al., XPS and ToF-SIMS Study of Electrode Processes on Sn???Ni Alloy Anodes for Li-Ion Batteries, The Journal of Physical Chemistry C, vol.115, issue.14, pp.115-7012, 2011.
DOI : 10.1021/jp201232n

J. ?wiatowska-mrowiecka, V. Maurice, S. Zanna, L. Klein, and P. Marcus, XPS study of Li ion intercalation in V2O5 thin films prepared by thermal oxidation of vanadium metal, Electrochimica Acta, vol.52, issue.18, pp.52-5644, 2007.
DOI : 10.1016/j.electacta.2006.12.050

S. Naille, R. Dedryvère, H. Martinez, S. Leroy, P. E. Lippens et al., XPS study of electrode/electrolyte interfaces of ??-Cu6Sn5 electrodes in Li-ion batteries, Journal of Power Sources, vol.174, issue.2, pp.1086-1090, 2007.
DOI : 10.1016/j.jpowsour.2007.06.043

URL : https://hal.archives-ouvertes.fr/hal-00354147

M. S. Moreno, R. C. Mercader, and A. G. Bibiloni, Study of intermediate oxides in SnO thermal decomposition, Journal of Physics: Condensed Matter, vol.4, issue.2, p.351, 1992.
DOI : 10.1088/0953-8984/4/2/004

A. Hightower, P. Delcroix, G. Le-caër, C. Huang, B. V. Ratnakumar et al., A [sup 119]Sn Mo??ssbauer Spectrometry Study of Li-SnO Anode Materials for Li-Ion Cells, Journal of The Electrochemical Society, vol.147, issue.1, pp.1-8, 2000.
DOI : 10.1149/1.1493855

K. F. Williams, C. E. Johnson, J. A. Johnson, D. Holland, and M. M. Karim, Mossbauer spectra of tin in binary Si-Sn oxide glasses, Journal of Physics: Condensed Matter, vol.7, issue.49, p.9485, 1995.
DOI : 10.1088/0953-8984/7/49/013

M. T. Sougrati, S. Jouen, and B. Hannoyer, Relative Lamb?Mössbauer Factors of Tin Corrosion Products, Hyperfine Interact, vol.167, pp.1-3, 2006.

F. Lu, X. Ji, Y. Yang, W. Denga, and C. E. Banks, Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion, RSC Advances, vol.21, issue.41, pp.18791-18793
DOI : 10.1021/cm9007014

D. Dambournet, K. W. Chapman, P. J. Chupas, R. E. Gerald, N. Penin et al., Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite, Journal of the American Chemical Society, vol.133, issue.34, pp.133-13240, 2011.
DOI : 10.1021/ja204284h

URL : https://hal.archives-ouvertes.fr/hal-00626975

J. Li, D. Le, P. P. Ferguson, and J. Dahn, Lithium polyacrylate as a binder for tin???cobalt???carbon negative electrodes in lithium-ion batteries, Electrochimica Acta, vol.55, issue.8, pp.55-2991, 2010.
DOI : 10.1016/j.electacta.2010.01.011

W. Zhang, M. Dahbi, and S. Komaba, Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries, Current Opinion in Chemical Engineering, vol.13, pp.36-44, 2016.
DOI : 10.1016/j.coche.2016.08.001

N. Kumar, M. Auffan, J. Gattacceca, J. Rose, L. Olivi et al., Molecular Insights of Oxidation Process of Iron Nanoparticles: Spectroscopic, Magnetic, and Microscopic Evidence, Molecular Insights of Oxidation Process of Iron Nanoparticles: Spectroscopic, Magnetic, and Microscopic Evidence, pp.13888-13894, 2014.
DOI : 10.1021/es503154q

URL : https://hal.archives-ouvertes.fr/hal-01426116

A. Kolmakov, Y. Zhang, and M. Moskovits, Topotactic Thermal Oxidation of Sn Nanowires:?? Intermediate Suboxides and Core???Shell Metastable Structures, Nano Letters, vol.3, issue.8, pp.1125-1129, 2003.
DOI : 10.1021/nl034321v

S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai et al., Having High Thermal Stability, Langmuir, vol.20, issue.15, pp.6476-6481, 2004.
DOI : 10.1021/la0493060

J. M. Manuel, R. Garcia, M. Kurtinaitiene, R. Juskenas, and D. Baltrunas, Fabrication of Barbed-Shaped SnO@SnO2 Core/Shell Nanowires, J. Phys. Chem. C, vol.115, pp.4495-4501, 2011.