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Control of Both Myeloid Cell
Infiltration and Angiogenesis by
CCR1 Promotes Liver Cancer

Metastasis Development
in Mice™?

Abstract

Expression of the CC chemokine receptor 1 (CCR1) by tumor cells has been associated with protumoral activity;
however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of
CCRL1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was
strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver mono-
cyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-
deficient bone marrow (BM) and showed better survival rates than the control reconstituted mice. These results
point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival
rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host
CCRL1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-
induced neoangiogenesis (in vitro and in vivo) in CCR1-deficient mice. Overall, our results indicate that CCR1
expression by both hematopoietic and nhonhematopoietic cells favors tumor aggressiveness. We propose CCR1
as a potential therapeutical target for liver metastasis therapy.

Neoplasia (2013) 15, 641648

Introduction genesis [8] and has been described to favor metastasis formation ar
Chemokines are small chemoattractant cytokines that bind to stissemination [9].

transmembrane domain G protewupled receptors. A large number The CC chemokine receptor 1 (CCR1) is primarily expressed
of chemokines are secreted by most, if not all, tumor cells. Théy arells of myeloid lineage, including monocytes, neutrophils, and
implicated in a wide spectrum of tumor environmelated processes,

including tumor spreading [1] tumor survival [2] and angiogeﬁ@gfgss all correspondence to: Christophe Combadiere, PhD, Institut National de la
3] h h . f ; f ch Ki o d Sante et de la Recherche Médicale (INSERM) UMR-S945, Laboratory of Immunity
[ ]’ owever, the major effect of chemokines Is proposed to tAﬁdqnfection, 6th Floor 91, Bld deldpital, 75013 Paris Cedex 13, France.

immune cell recruitment [4]. E-mail: christophe.combadiere@upmc.fr
It is now well described that the infiltration of tumors by leukBus work is supported in part by grants from INSERM, the Institut du Cancer

e 05), the Canceropole-lle de France, the Agence Nationale de la Recherche
cytes, and more speC|f|caIIy macrOphageS’ could have a pI’Ot. Hﬁglélgsculaire, Obesite et Didijgtant AO5088DS), ANFblanZ(AO5120DD),

activity [5]. The tumoral environment progressively reprograms iRfiluropean graritnocheri(LSHB-CT-2005-518167). M.P.R. was arecipient of a
trating macrophages, ateomed tumor-associated macrophagfswship from Canceropole-lle de France and supported by European grant Innochem
(TAMSs), resulting in a progressive loss of antitumor activity. FHEe7.CA. isarec[pientofth_e Neuropble _de Recher_che Francilie_n.C.C. is the recipient
is shown by reduced potency of antigen presentation [6], ceII%ﬂ&gnt.ra“'“te”aczfmm Assistance Publiques-Hopitaux de Paris.

L. . : . IS article refers to supplementary materials, which are designated by Table W1 and
toxicity, Thl cytokine secretion and enhanced tumor 5UfV|Va|:F@UFfs W1 to W3 and are available online at www.neoplasia.com.
production of proangiogenic, tissue modeling, and anergistic Rydeived 7 November 2012; Revised 20 March 2013; Accepted 24 March 2013
kines [7]. High infiltration of tumors by macrophage-like cellgiyright © 2013 Neoplasia Press, Inc. Al rights reserved 1522-8002/13/$25.00
humans and mice is associated with poor survival [5] and high @gi0s.1593/ne0.121866
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dendritic cells but also by some T lymphocytes and intimal smanratibody to CD11b (antCD11b PerCP-Cy5), antiy-6G PE, anti.
musclelike cells. In a mouse colorectal tumor model, tumor tglbC-biotin, antiCD4 PE, antiCD3 Alexa Fluor 488, anCD8a
invasion, metastasis formation, and myeloid progenitor cell reateia Fluor 647, NK1.1 Alexa Fluor 647, &@b11c APC, and
ment were inhibited in CCRIS mice or after administration oftreptavidin-PerCP (all soureechfBD Pharmingen, San Diego, CA).
CCR1 pharmacological blockade [10,11], suggesting that C@Rtl-mouse neutrophil 7/4 Alexa Fluor 488 and Alexa Fluor 647 were
dependent myeloid infiltration has a protumoral effect. In additimm AB Serotec (Oxford, United Kingdom). Cell suspensions were
it has been proposed that CCR1 promotes tumor spreadingnaudtbated with appropriate fluorochrome-conjugated monoclonal
angiogenesis by controlling metalloproteinase secretion [12]. lantiti®dies and analyzed on a FACSCalibur cytofluorimeter (Becton
study, we used a model of liver tumor metastasis developmemiekidson, Franklin Lakes, NJ). Results were analyzed with CellQuest
provided, for the first time, evidence of CCR1 expression by Romsoftware (Becton Dickinson).
tumoral cells favoring hepatocellular metastasis development through
control of both mononuclear cell infiltration and angiogenesis.Bone Marrow Chimeras

Control and CCR¥Srecipient mice were irradiated with 10-Gy

radiation using an ORION linear accelerator (General Electric

Materials and Methods Healthcare, Milwaukee, WI). Whole bone marrow (BM) from either
control GFP mice [C57BL/6-Tg(UBC-GFP)30Scha/J] or transgenic
Mice CCR13S GFP (see Mice section) was extracted from the tibia and

Female C57BI/6 mice (Charles River, Lyon, France) were rfaimr. Donor cells (5 x 90wvere injected into recipient mice through
tained under specific pathogen-free conditions on a 12-hour lightttaretro-orbital vein. Twelve weeks after transplant, recipient mice
cycle. CCR1-deficient mice (CCRY on C57BI/6 background werevere injected with EL-4 thymoma cells.
provided by Drs Philippe Murphy and Ji Liang Gao (Laboratory of
Molecular Immunology, National Institute of Allergy and Infectid@rtic Rings
Diseases, National Institutes of Health, Bethesda, MD).£R1 Control and CCRISmice aortas were isolated and cut into small
mice were back-crossed eight generations with C57BI/6 green feemasents. These were placed in Matrigel (BD Bioscieraes)
cent protein [(GFP); C57BI/6-Tg(UBC-GFP)30Scha/J] mice fré2awell plates containing 10% FCS in Dulbsatwodified Eagke
The Jackson Laboratory (Bar Harbor, ME) to obtain SGRAFP  medium (DMEM) culture medium. Cultures were incubated at 37°C
mice. GFP expression were detected in all tissues examined andaugb8% CQ for 6 days, and explants were monitored for sprouting
track leukocytes after transplantation. Mice used for experimentsessels. For the ELebnditioned medium experiments, cultured
8 to 10 weeks old. Animal experiments were approved by the locakblia were removed from wells aftgay® and replaced by 50%
stitutional Animal Care and Use Committee of Cesisolbration DMEM, 10% FCS + 50% RPMI, 10% FCS or 50% DMEM, 10%

Fonctionelle, Pitié-Salpétriere. FCS + 50% EL-4conditioned RPMI, 10% FCS. After fixation and
4 ,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) staining, ves-
Cell Lines sel formation was quantified by measuring the area of vessel-like exte

The C57BL/6 dimethylbenzanthracene-induced thymoma EL24S from the explants using ImageJ 1.39U software.
was maintained in RPMI 1640 (Invitrogen Life Technologies . . . .
Paisley, Scotland) supplemented with 10% heat—inactivatedcl‘l;%iL and Lectin Imml_JnohlsftQCh_emlcaI Staln_lng _
calf serum (FCS: Seromed, Berlin, Germany), 2-gltamine, At day 12 after EL-4 tail vein injection, réi-frozen liver sections
1000 U/ml penicillin, 1 mg/ml streptomycin, 250 ng/ml amphoteri(f:riﬂm control and CCRIS mice were fixed with 4% paraformal-

B (Invitrogen Life Technologies), and\V8 22-ME (Sigma-Aldrich, dehyde for 10 minutes, washed three times for 5 minutes in PBS,
St Louis, MO). and incubated overnight at 4°C with anti-CD31 (AB Serotec) or anti-

lectin (Sigma-Aldrich) antibody. CD31 staining was visualized with
r-phycoerythrin (RPE)-conjugated anti-rabbit Ig antibody (Invitrogen,
. . L . Carlsbad, CA). Lectin- and CD31-positive areas in tumoral and non-
C57BL/6 control mice or CCRAS mice were injected in the tail mqra) livers were visualized by scanning sections at low magnificz

vein with 5 x 10EL-4. In another model, mice received subcutanegiis x20) The number of microvessels was recorded in six randomiy
(s.c.) injections of 1 x Afumor cells in 100! of phosphate-buffered.posen fields of view using ImageJ 1.39U software.
saline (PBS) in the right flank. Tumor size was measured three times a

yveek with calipers, and tumorvplume was estimgted using thelfﬁ@%rse Transcripti@olymerase Chain Reaction
ing formula: width x length x (width + length)/2. Mice were sacrificefl,i5 RNA was extracted from sorted hepatic endothelial cells (ECs)
when the tumor volume reached approximately.3 cm peripheral blood mononuclear cells (PBMCs), or cultured EL-4 using
Qiagen Micro Kit (Qiagen, Hilden, Germany), according to the man-
Flow Cytometry ufactures instructions. Total RNA was reverse transcribed to cDNA
Atday 12 after EL-4 tail vein injection, harvested livers were cutsit@ SupertScript Reverse Transcriptase (Invitrogen). Real-time poly
small pieces and digested with 400 units of collagenase D (Rmrhse chain reaction was carried out using SYBR Premix (Invitroger
Diagnostics GmbH, Mannheim, Germany) for 30 minutes. Cell stit the primer sets described in Table W1. To standardize mRNA con-
pensions were filtered through a if0eell strainer (BD Biosciencegentrations, transcript levelglg€eraldehyde 3-phosphate dehydrogena
Bedford, MA) and isolated with density separation medium (Histop@&a@®®DH) were determined in parallel for each sample, and relative
1083; Sigma-Aldrich). Leukocytes were collected, washed in PB&raswlipt levels were corrected by normalization on the basis of GAPDF
labeled for flow cytometry using the following monoclonal antibottesscript levels.

Tumor Models
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Statistical Analysis mean volume of EL-4 tumors in CC¥#mice was less than in con-
Mann-Whitney test and/or log-rank (Mantel-Cox) test were usgidmice at all time points (FigurB)1 These results indicate that

to determine whether variation in experimental groups was sigtéfi-cell CCR1 expression favors tumor aggressiveness.
cant using GraphPad Prism software (GraphPad, San Diego, CA).

CCRL1 Deficiency Is Associated with Decreased Infiltration of
Results Myeloid Cells into Tumors
To better understand how CCR1 activation may promote liver
CCR1 Deficiency Increases Survival in Tumor Metastasigetastasis development, we analyzed the leukocyte infiltration during
Engraftment Models early stages of tumor development. Analyses were performed 12 day
After IV injection of control C57BL/6 mice into the tail vein, ELafter IV tumor injection in the liver and the kidney. At this stage,
thymoma cells selectively grew in the liver and kidney. The mottatitgr foci are undetectable macroscopically. Using flow cytometry,
occurred approximately 3 weeks after tumor cell injection, andvedtédentified tumor cell infiltrates as myeloid infiltrates based on
32 days, all of the mice had died (Figé¥e Ihterestingly, in this CD11bhi and NK 1.1neg expression (gate 1 in Figytef2pandl
tumor model, the CCR1-deficient mice (C&RLsurvived longer Inflammatory monocytes were discriminated from the so-called
than control mice, with a mean survival of 27.5 and 23 days, regparelling monocytes based on 7/4 expression level [13] (gates 2
tively (Figure A). In addition, 20 days after IV tumor cell injectiomnd 3 in Figure 2Aight panel). There was a strict co-expression
livers from CCR¥Smice were much smaller in size than those floetween 7/4 marker and Ly6C, the marker commonly used to dis-
control mice, 2.1 £ 0.2 and 3.4 + 0.4 g, respectively (FBufBol criminate monocyte subpopulations as previously published [13] (in
confirm the role of CCR1 in tumor growth, we set up a second m8dpplementary data). Inflammatory monocytes were defined as 7/4hi,
in which tumor cells were injected s.c. While all control mice deyélchi, Ly6Gneg cells and resident monocytes as 7/4lo, Ly6Cint/lo,
oped palpable tumors 6 days after s.c. injection, only half ofy6&neg cells. Neutrophils were defined as 7/4hi Ly6Chi Ly6Ghi
CCR1%S mice showed the presence of tumors at day 8 (RRurecells (gate 4). CD4 and CD8 lymphocytes were defined as, respectively
After 3 weeks, 30% of the CCR3 mice remained tumor-free, a€D3+ CD4+ NK1.Band CD3+ CD8+ cells, whereas NK cells were
opposed to all of the control mice that had developed tumors défieed as CO8NK1.1+ cells and NKT as CD3+ NK1.1+ cells (not
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Figure 1. Lack of CCR1 reduces tumor development. (A) Survival curve of C57BL/6 control mice (solid line) or C57BL/6 CCR$/S mice
(dotted line) injected IV with 5 x 10 ® EL-4. Mean survival time of CCR15/S mice (n = 28) was 20% longer than in control mice ( n = 19).
(B) Twenty-one days after tumor inoculation, the increase in liver weight is smaller in CCR1S/S mice compared to WT mice. Each data
point represents the mean tumoral liver weight + SEM of 10 mice. (C) CCR1 $/S mice (dotted line, n = 11) showed delay tumor ap-
parition compared to control mice (solid line, n =11), log-rank test, P =.005. (D) Tumor size growth in control mice (solid line, n=11) or
CCR1S/S mice (dotted line, n = 11) injected s.c. with 1 x 10 5 EL-4. Tumor development is delayed in CCR1S/S mice. *P<.05; ** P<.01
(mice with tumor size of >3 cm 2 were killed).
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Figure 2. CCR1 deficiency alters leukocyte recruitment at the tumor site. (A) Dot plot analysis identified tumoral leukocyte subpopulation
infiltrates by flow cytometry analysis: 1, myeloid cells; 2, inflammatory monocytes; 3, resident monocytes; 4, neutrophils. (8) CCR1 S/S
mice show defect in the myeloid cell mobilization, mainly due to a defect recruitment of the 7/4 + monocyte population. Percentages

+ SEM were indicated for each group (control in black, n = 10; CCR15/S in white, n = 10) and were obtained from two independent
experiments. Np, neutrophils; significant value of * P < .05, ** P < .001, and ***P < .001.

shown). Interestingly, a major effect on leukocyte recruitment ipréasent in larger number in the livers of C&¥¥rice compared to
CD11b + myeloid compartment was observed (FiguleftZoang] those of control mice (Figum; ® = .043), whereas CD3+ CD4+,

with a 50% reduction in CCRIS mouse liver (6.6% and 3% of totaNK, and NKT cells were unaltered (Figlediddleandright pane).

cells, respectively/< .001). This was associated with reduced infilkaalysis of the kidney infiltrates showed similar trends with reduced
tion of both inflammatory (3.5% and 1.59%; .005) andpatrolling monocyte and CD8+ cell infiltration (Figure W1). The concomitant
monocytes (1% and 0.5®7~ .014). We did not observe any signiflecrease of TAM infiltration, with the increase of cytotoxic CD8 T cells,
icant differences in the neutrophil infiltrate. In the lymphocyte comay indicate a better control of tumor immunosuppression by the
partment (FigureR middle panglonly CD3+ CD8+ cells wereimmune system in CCR/S mice.
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Figure 3. CCR1 expression by both BM and non. BM-derived cells promotes tumor metastasis. Survival curve of CCR1S/S and control
chimeric mice injected IV with 5 x 10 ® EL-4. Chimeric mice resulted from control and CCR1S/S irradiated hosts reconstituted with
CCRI15/S GFP or control GFP BM. CCRB/S hosts with control BM (open squares; n = 7) and WT host with control BM (filled squares;

n = 9) had significantly decreased mean survival than mice of the same genotype with CCR1 BM, respectively, WT host with CCR1 BM

(open circles; n = 10) and CCR1 host with CCR1 BM (filled circles; n = 11 mice).
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Protumoral Effect of CCR1 Is Due to Expression on after tumor inoculation, the liver microvessel density as assessed b
Both Hematopoietic and Nonhematopoietic Cells CD31 staining was increased by more than thredfald(4) in

We hypothesized that in addition to CCR1-driven protumoral gshtrol mice, whereas it was only modestly increased i S@Re
kocyte recruitment, nonhematopoetic cells expressing CCR1 magjee 8). Similar results were obtained with lectin staining
favor tumor growth, as proposed previously for CCR5 [14]. To dgfifyure W3). These results indicated that tumor development is
eate the contribution of CCR1 on hematopoietic cells compare@ddgciated with enhanced hepatic capillary density before we coul

nonhematopoietic cells, we perforfdtchimera experiments detect the tumoral foci and strongly suggested that CCR1 promoted
We first assessed the effect of CCR1 deletion on leukocyte sulggafit-associated vascularization of the liver.

lation engraftment. The distributions of lymphocytes, NK, monocytes,
and neutrophils in the blood of wild type (WT) mice irradiated and
reconstituted with WT or CCRISBM or in the blood of CCRES  CCR1 Deficiency Led to Reduced Monocyte-
mice irradiated and reconstituted with WT BM were unchangedndependent Neoangiogenesis
dicating that the lack of CCR1 expression by either hematopoietilBecause CCR1 may favor tumor-associated vascularization, we
nonhematopoietic cells did not altered engraftment (Figure W2¢stigated the role of CCR1 iniawitroangiogenesis model sup-
CCR1SSand control mice were sublethally irradiated and regmsedly independent of the circulating leukocytes. We compared the
stituted with BM cells from either GFP control or CERGFP vessel sprouting around aortic ring from control and €S Rice
transgenic mice (Figure 3). All mice showed greater than 90%iguifre B, leftandright panelsespectively). After 6 days in culture,
GFP-positive leukocytes (data not shown). After EL-4 IV injectimm area of vessel-like extensions from @8R#dants was about
both control (open squares) and CE&Rfecipient (open circles) mic&0% smaller than those of control explants (FigrdBese data
showed increased survival when reconstituted withS®B\  suggest that CCR1 promotes EC outgrowth, independent of recruited
compared to their respective controls, with median survival of 1égehbid cell with proangiogenic properties. To further investigate the
20 daysH < .001) and 15 and 23 days= .01), respectively. Thismechanism associated with Eingluced angiogenesis in the liver, we
indicates that hematopoietic cell CCR1 expression favors EL-4 booiepared the vessel sprouting around aortic ring from control and
Surprisingly, survival rates were extended in€€RIce receiving CCR1SS mice in the presence of ELednditioned media. EL-4
either control (filled circles) or CG3(open circle) BM, with mediansupernatant increased vessel sprouting from WT mouse aortic ring
survival of 20 and 23 dals(.018). This suggests that the expressiooahpared to control media by 552(.0085). In these conditions,
CCRL1 by nonhematopoetic cells also contributes to tumor growthessel sprouting of CC&®3 aortic ring was strongly inhibited (57%,
P < .001), indicating that EL-4 promoted CCR1-dependent angio-

Lack of CCR1 Led to Reduce Hepatic Capillary Density dgengsis in a hematopoietic-independent model. To support the
Early-Stage Tumor Development hypothesis that similar mechanisms may take place in the tumor micro-

We postulated that CCR1 may also control metastasis developmargnment, we investigated the expresstoRifin sorted hepatic
by regulating tumor-induced vascularization. To test this hypotf&Sss(Figure G) and of its ligands in the EL-4 tumoral cell line
we measured the blood capillary density in the control olECR(Figure B). CCR1transcripts were strongly expressed in PBMCs
mouse livers at a time point where tumors were not macroscopigdllyere also detected in hepatic ECs. EL-4 expressed high level
detectable (Figurédleftandright panelsespectively). Twelve daySCL5but no CCL3 indicating that EL-4 secretion may directly

CD31
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Figure 4. Reduced numbers of microvessels in tumoral liver of CCR1S /S mice. (A) Frozen liver sections from CCR15/S and control mice
injected with tumor cells were stained with anti-CD31 antibody. Control staining was performed by only incubating with the secondary
antibody. (B) Number of microvessels were counted in six randomly chosen fields. Each value represents mean + SEM ( h = 6). * P<.05,
** P < 001 compared to DO, #P < .05 compared to control mice.
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A Vessel sprouting B The better survival of the CCRS mice is associated with both the
o= 1.0 ECCRl /I reductipn in infiltration of myeloid lineage f:ells anc_j h.ighest Ie_vel pf
R4 , T os Control ., infiltration of CD8 T cells. Moreover, angiogenesis is defective in
f . _ E" CCR13S mice bothin vivoandin vitra
P 4 PSRN ? = 06 It was previously proposed that CCR1 controls immature myeloid
( / \ \ < cell recruitment in tumors, therefore promoting tumor development
S ‘o L/ | S 04 ko [10,11]. Here, we show that CCRL1 is also involved in the recruit-
/ -7 1 3 i ment of mature myeloid cells, mainly altering monocyte but not neu-
\\ outgrowth Area 57 202 trophil infiltration. Although neutrophils express CCR1, the kinetics of
/ o . . - .
" “N_7 0.0/ their recr_wtment may dlffv_ar from that of monocytes. Alternat|vgly,
RPMI EL4 neutrophils may be recruited by other tumor-secreted chemokines.
supernatant such as Cxcl8, which could compensate for the lack of CCR1.
CCR1 deficiency affects slightly more inflammatory monocyte infiltra-
C 15+ D tion thanepatrolling monocyte infiltration. Some chemokine recep-
w 2007 tors, like Ccr2 or Cx3crl, are known to be differentially expressed by
2T §- T 10- these subsets of monocytes, but there are no clear evidences concern
2 o 104 2 > CCR1 [23]. However, a previous report indicated that the CCR1 RNA
2 < b < 81 expression level is two to three times higher in 7/4hi monocytes than
= §° £ § 6 7/41o from the blood [24]. Nonetheless, the implication of CCR1 in
S = 5-1 ST 4. migratory properties of different subsets of monocytes should be
°L § £ 5. completed to confirm that CCRL1 is preferentially implicated in 7/4hi
© monocyte migration than 7/4lo monocyte migration. We also observed
0- 0- enhanced CD8 T lymphocyte infiltration in C&&Imice, likely to
& WNE N (59 @5’ result from the tumor microenvironment alteration in CGSRtice.
® cé% Qé% Globally, both reduction in the protumoral myeloid compartment
Qqs“ © and enhanced cytotoxic CD8 T cell infiltration may play a role in

the improved control of tumor development in CCR1 mice. The role
of CCR1 expressed by nontumoral cells remains ambiguous in tumol

sprouting assay. (A) Representative photomicrography of aortic ring development. Although the expression of CCR1 by cells of myeloid

with vessel sprouting. The outgrowth area was measured between !meage may promote tumor dgvelopment, several models support th
the vessel growth front and the base of the aortic ring. (B) Vessel idea that CCR1 may favor antitumor immune response when tumor
sprouting in control and CCR1-deficient aortic ring. Outgrowth area immunotolerance is thwarted. For instance, the antitumoral effect of
was measured in the absence or presence of EL-4.conditioned  radiofrequency ablation was enhanced by an agonist of CCR1 in ¢
media. Each value represents mean area + SEM (0 = 12). (C) Level of - murine hepatocellular carcinoma model. This effect was associated wit
Eqﬁ:iltlzﬁélsscgz :gotl‘stlﬁ"gfgs V\?ggtsri';"tif;]odmd\é\]{; ggigggﬁ’g increased infiltration of the radiofrequency ablagated tumor by
F4/80S CD31+ cells. (D) Level of CCR1 ligand transcripts (CCL3 lymphocytes and CCRll-posmve dendrltlc cells. In QGFMJC&
and CCL5) in EL-4. **P < .001 compared to WT and ** P < .01 both the Ieukocyte repru!tment and antitumor effect, induced by the
compared to control media. CCR1 agonist, were inhibited [25]. Taken together, the CCR1 axis
may control the subtle balance between innate protumoral activity

and adaptative antitumoral responses.

activate hepatic ECs. Altogether, these data support the model ¥ tumor-induced vascular capillary density was reduced in

CCR1-triggered angiogenesis in the absence of hematopoietic £k 1-deficient mice. These teseonfirm previous observation
made by Yang et al. in a model of induced hepatocellular carcinoms

[12], although our data indicated that this effect was dependent on
Discussion host CCR1 expression and not due to tumor cells that were CCR1
While lymphocyte infiltration is usually associated with good progypetent. The cellular origin of the neovasculature in this model is
nosis [15], tumor-associated myeloid lineage cells are almost rdvelgsarly established, as the ability of BM-derived cells to integrate
associated with poor survival, increased tumor spreading, and veetasd-has been proposed in an aggressive tumor model. However,
tases [5]. The roles of several chemokines in controlling human tlenmnstrated that EL-4 supernatant promotes angiog&ngss
development or spreading have been well demonstrated [16]. $slepahdently of hematopoietic cells. Moreover, the vessel densit
polymorphisms in human chemokine genes affect patient progmasimeasured before macroscopic tumor detection, suggesting the
markers, possibly by controlling TAM recruitment [17,18]. The pabthat time, mostly hepatic vasculature was altered. Hence, even |
tumoral effect of CCR1 by tumor cells has been described in sexecainnot exclude it, the contribution of hematopoietic cells in the
mouse tumor models [122]. This study focused on the role dérmation of the neovessel wall is likely to be minor. Consistent with
CCR1, expressed by stromal cells but not tumor cells. Our datagrediious studies performed with C&85nice [14], we demon-
cate that tumor development is impaired in GRice, in both strated, using BM transfer experiments, that tumor aggressivenes
the tumor metastasis implantation model and tumor growth maslabt only dependent on CCR1 expression by stromal hematopoietic
compared to control mice. We showed that CCR1 expression orckdthbut also on its expression by stromal nonhematopoetic cells
hematopoietic and nonhematopoietic cells impaired mouse sulwidedd, stromal nonhematopoetic cells have already been associat

Figure 5. Lack of CCR1 reduces neoangiogenesis in a vessel
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Table W1.RT-PCR Primer Sequences.

Genes Forward Reverse

CCL5 GCTGCCCTCACCATCATCCTCACT GGCACACACTTGGCGGTTCCTTC
CCL3 GTGCCCTTGCTGTTGTTGTGTGAT CTGCCGGTTTCTCTTCGTCAGGA
CCR1 TTAGCTTCCATGCCTGCCTTATA TCCACCTGCTTCAGGCTCTTGT
GAPDH CCTGGAGAAACCTGCCAAGTATG AGAGTGGGAGTTGCTGTTGACTC
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Figure W1. CCR1 deficiency alters leukocyte recruitment at the tumor site. (A) CCR1S/S mice showed defects in the myeloid and
lymphoid cell mobilization in the kidney at day 12 post-tumor inoculation. Percentages (+ SEM) were indicated for each group (control
in black, n = 5; CCR1S/S in white, n = 5). Np, neutrophils; significant value of * P < .05 and ** P < .001.



Circulating Leukocytes

Donor
Recipient

Monocytes

wWT
WT

CCR1

WT CCR1

WT

7/4 hi

WT WT CCR1
WT CCR1 WT

7/4 1o

WT
WT CCR1

WT CCR1

WT

Neutrophils NK

WT WT CCR1
WT CCR1 WT

WT WT CCR1
WT CCR1 WT

Lymphocytes

WT CCR1

WT

WT CCR1 WT

Figure W2. CCR1 expression by hematopoietic or nonhematopoietic cells do not alter the peripheral leukocyte distribution after BM
transfer. Percentages of circulating total monocytes, inflammatory monocytes, resident monocytes, neutrophils, NK, and lymphocytes
were evaluated 8 weeks after irradiation of WT or CCR1S/S recipients reconstituted with WT or CCR1S/S BM; n = 3 to 5 mice.
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Figure W3. Reduced numbers of microvessels in tumoral liver of
CCR1S/S mice. Frozen liver sections from CCR1S/S and control
mice injected with tumor cells were stained with lectin antibody.
The number of microvessels was counted in six randomly chosen
fields. Each value represents mean + SEM (n=6t0 8). ** P< .01
compared to DO; #p< 01 compared to control mice.





