Multiple scattering by cylinders immersed in fluid: High order approximations for the effective wavenumbers

Andrew N. Norris Jean-Marc Conoir 1
1 MPIA - Modélisation, Propagation et Imagerie Acoustique
DALEMBERT - Institut Jean Le Rond d'Alembert
Abstract : Acoustic wave propagation in a fluid with a random assortment of identical cylindrical scatterers is considered. While the leading order correction to the effective wavenumber of the coherent wave is well established at dilute areal density (n0) of scatterers, in this paper the higher order dependence of the coherent wavenumber on n0 is developed in several directions. Starting from the quasi-crystalline approximation (QCA) a consistent method is described for continuing the Linton and Martin formula, which is second order in n0, to higher orders. Explicit formulas are provided for corrections to the effective wavenumber up to O (n40). Then, using the QCA theory as a basis, generalized self-consistent schemes are developed and compared with self-consistent schemes using other dynamic effective medium theories. It is shown that the Linton and Martin formula provides a closed self-consistent scheme, unlike other approaches.
Type de document :
Article dans une revue
Journal of the Acoustical Society of America, Acoustical Society of America, 2011, 129 (1), pp.104 - 113. 〈10.1121/1.3504711〉
Liste complète des métadonnées

http://hal.upmc.fr/hal-01587129
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mercredi 13 septembre 2017 - 16:46:41
Dernière modification le : jeudi 11 janvier 2018 - 06:27:14

Identifiants

Collections

Citation

Andrew N. Norris, Jean-Marc Conoir. Multiple scattering by cylinders immersed in fluid: High order approximations for the effective wavenumbers. Journal of the Acoustical Society of America, Acoustical Society of America, 2011, 129 (1), pp.104 - 113. 〈10.1121/1.3504711〉. 〈hal-01587129〉

Partager

Métriques

Consultations de la notice

31