N. Vogt, S. H. Lefevre, F. Apiou, A. M. Dutrillaux, A. Cor et al., Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas, Proc. Natl Acad. Sci. USA, pp.11368-11373, 2004.
DOI : 10.1016/j.mrfmmm.2003.08.013

C. T. Storlazzi, T. Fioretos, C. Surace, A. Lonoce, A. Mastrorilli et al., MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene, Human Molecular Genetics, vol.15, issue.6, pp.933-942, 2006.
DOI : 10.1093/hmg/ddl010

A. Gibaud, N. Vogt, N. S. Hadj-hamou, J. P. Meyniel, P. Hupe et al., Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci, Human Molecular Genetics, vol.19, issue.7, pp.1276-1285, 2010.
DOI : 10.1093/hmg/ddq004

A. Blumrich, M. Zapatka, L. M. Brueckner, D. Zheglo, M. Schwab et al., The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers, Human Molecular Genetics, vol.20, issue.8, pp.1488-1501, 2011.
DOI : 10.1093/hmg/ddr027

C. T. Storlazzi, A. Lonoce, M. C. Guastadisegni, D. Trombetta, P. D-'addabbo et al., Gene amplification as double minutes or homogeneously staining regions in solid tumors: Origin and structure, Genome Research, vol.20, issue.9, pp.1198-1206, 2010.
DOI : 10.1101/gr.106252.110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928498

T. Rausch, D. T. Jones, M. Zapatka, A. M. Stutz, T. Zichner et al., Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations, Cell, vol.148, issue.1-2, pp.59-71, 2012.
DOI : 10.1016/j.cell.2011.12.013

M. Debatisse and B. Malfoy, Gene Amplification Mechanisms, Genome Iinstability in Cancer Development, vol.570, pp.343-362, 2005.
DOI : 10.1007/1-4020-3764-3_12

M. T. Kuo, R. C. Vyas, L. X. Jiang, and W. N. Hittelman, Chromosome breakage at a major fragile site associated with P-glycoprotein gene amplification in multidrug-resistant CHO cells., Molecular and Cellular Biology, vol.14, issue.8, pp.5202-5211, 1994.
DOI : 10.1128/MCB.14.8.5202

C. Ma, S. Martin, B. Trask, and J. L. Hamlin, Sister chromatid fusion initiates amplification of the dihydrofolate reductase gene in Chinese hamster cells., Genes & Development, vol.7, issue.4, pp.605-620, 1993.
DOI : 10.1101/gad.7.4.605

A. Coquelle, F. Toledo, S. Stern, A. Bieth, and M. Debatisse, A New Role for Hypoxia in Tumor Progression, Molecular Cell, vol.2, issue.2, pp.259-265, 1998.
DOI : 10.1016/S1097-2765(00)80137-9

A. Coquelle, E. Pipiras, F. Toledo, G. Buttin, and M. Debatisse, Expression of Fragile Sites Triggers Intrachromosomal Mammalian Gene Amplification and Sets Boundaries to Early Amplicons, Cell, vol.89, issue.2, pp.215-225, 1997.
DOI : 10.1016/S0092-8674(00)80201-9

M. Ciullo, M. A. Debily, L. Rozier, M. Autiero, A. Billault et al., Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I, Human Molecular Genetics, vol.11, issue.23, pp.2887-2894, 2002.
DOI : 10.1093/hmg/11.23.2887

S. Selvarajah, M. Yoshimoto, P. C. Park, G. Maire, J. Paderova et al., The breakage???fusion???bridge (BFB) cycle as a mechanism for generating genetic heterogeneity in osteosarcoma, Chromosoma, vol.107, issue.6, pp.459-467, 2006.
DOI : 10.1128/MCB.3.4.699

S. C. Reshmi, S. Roychoudhury, Z. Yu, E. Feingold, D. Potter et al., Inverted duplication pattern in anaphase bridges confirms the breakage-fusion-bridge (BFB) cycle model for 11q13 amplification, Cytogenetic and Genome Research, vol.116, issue.1-2, pp.46-52, 2007.
DOI : 10.1159/000097425

B. Vukovic, B. Beheshti, P. Park, G. Lim, J. Bayani et al., Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer, Cytogenetic and Genome Research, vol.116, issue.1-2, pp.1-11, 2007.
DOI : 10.1159/000097411

G. Lim, J. Karaskova, B. Beheshti, B. Vukovic, J. Bayani et al., An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma, Genes, Chromosomes and Cancer, vol.107, issue.4, pp.392-403, 2005.
DOI : 10.1128/MCB.18.1.536

S. M. Carroll, M. L. Derose, P. Gaudray, C. M. Moore, D. R. Needham-vandevanter et al., Double minute chromosomes can be produced from precursors derived from a chromosomal deletion., Molecular and Cellular Biology, vol.8, issue.4, pp.1525-1533, 1988.
DOI : 10.1128/MCB.8.4.1525

URL : http://mcb.asm.org/content/8/4/1525.full.pdf

E. Pipiras, A. Coquelle, A. Bieth, and M. Debatisse, Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome, The EMBO Journal, vol.17, issue.1, pp.325-333, 1998.
DOI : 10.1093/emboj/17.1.325

URL : http://embojnl.embopress.org/content/embojnl/17/1/325.full.pdf

N. Shimizu, Y. Miura, Y. Sakamoto, and K. Tsutsui, Plasmids with a mammalian replication origin and a matrix attachment region initiate the event similar to gene amplification, Cancer Res, vol.61, pp.6987-6990, 2001.

N. Shimizu, T. Hashizume, K. Shingaki, and J. K. Kawamoto, Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription, Cancer Res, vol.63, pp.5281-5290, 2003.

M. Guillaud-bataille, O. Brison, G. Danglot, C. Lavialle, B. Raynal et al., Two populations of double minute chromosomes harbor distinct amplicons, the <i>MYC</i> locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line, Cytogenetic and Genome Research, vol.124, issue.1, 2009.
DOI : 10.1159/000200082

A. Letessier, G. A. Millot, S. Koundrioukoff, A. M. Lachages, N. Vogt et al., Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site, Nature, vol.45, issue.7332, pp.120-123, 2011.
DOI : 10.2144/000113002

W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle et al., The Human Genome Browser at UCSC, Genome Research, vol.12, issue.6, pp.996-1006, 2002.
DOI : 10.1101/gr.229102

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC186604/pdf

T. Popova, E. Manie, D. Stoppa-lyonnet, G. Rigaill, E. Barillot et al., Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays, Genome Biology, vol.10, issue.11, p.128, 2009.
DOI : 10.1186/gb-2009-10-11-r128

URL : https://hal.archives-ouvertes.fr/inserm-00663915

M. Muleris, A. Almeida, A. M. Dutrillaux, E. Pruchon, F. Vega et al., Oncogene amplification in human gliomas: a molecular cytogenetic analysis, Oncogene, vol.9, pp.2717-2722, 1994.

E. Pruchon, L. Chauveinc, L. Sabatier, A. M. Dutrillaux, M. Ricoul et al., A cytogenetic study of 19 recurrent gliomas, Cancer Genetics and Cytogenetics, vol.76, issue.2, pp.85-92, 1994.
DOI : 10.1016/0165-4608(94)90454-5

M. J. Ferber, P. Eilers, E. Schuuring, J. A. Fenton, G. J. Fleuren et al., Positioning of cervical carcinoma and Burkitt lymphoma translocation breakpoints with respect to the human papillomavirus integration cluster in FRA8C at 8q24.13, Cancer Genetics and Cytogenetics, vol.154, issue.1, pp.1-9, 2004.
DOI : 10.1016/j.cancergencyto.2004.01.028

M. Debatisse, L. Tallec, B. Letessier, A. Dutrillaux, B. Brison et al., Common fragile sites: mechanisms of instability revisited, Trends in Genetics, vol.28, issue.1, pp.22-32, 2012.
DOI : 10.1016/j.tig.2011.10.003

L. Tallec, B. Dutrillaux, B. Lachages, A. M. Millot, G. A. Brison et al., Molecular profiling of common fragile sites in human fibroblasts, Nature Structural & Molecular Biology, vol.75, issue.12, pp.1421-1423, 2011.
DOI : 10.1101/sqb.2010.75.011

K. Mrasek, C. Schoder, A. C. Teichmann, K. Behr, B. Franze et al., Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones, Int. J. Oncol, vol.36, pp.929-940, 2010.

R. A. Burrell, S. E. Mcclelland, D. Endesfelder, P. Groth, M. C. Weller et al., Replication stress links structural and numerical cancer chromosomal instability, Nature, vol.136, issue.7438, pp.492-496, 2013.
DOI : 10.1053/j.gastro.2008.10.086

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636055

M. J. Jones and P. V. Jallepalli, Chromothripsis: Chromosomes in Crisis, Developmental Cell, vol.23, issue.5, pp.908-917, 2012.
DOI : 10.1016/j.devcel.2012.10.010

URL : http://doi.org/10.1016/j.devcel.2012.10.010

P. Liu, C. M. Carvalho, P. J. Hastings, and J. R. Lupski, Mechanisms for recurrent and complex human genomic rearrangements, Current Opinion in Genetics & Development, vol.22, issue.3, pp.211-220, 2012.
DOI : 10.1016/j.gde.2012.02.012

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378805

M. F. Arlt, J. G. Mulle, V. M. Schaibley, R. L. Ragland, S. G. Durkin et al., Replication Stress Induces Genome-wide Copy Number Changes in Human Cells that Resemble Polymorphic and Pathogenic Variants, The American Journal of Human Genetics, vol.84, issue.3, pp.339-350, 2009.
DOI : 10.1016/j.ajhg.2009.01.024

URL : http://doi.org/10.1016/j.ajhg.2009.01.024

P. J. Campbell, P. J. Stephens, E. D. Pleasance, S. O-'meara, H. Li et al., Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing, Nature Genetics, vol.11, issue.6, pp.722-729, 2008.
DOI : 10.1101/gr.194201

P. J. Stephens, C. D. Greenman, B. Fu, F. Yang, G. R. Bignell et al., Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development, Cell, vol.144, issue.1, pp.27-40, 2011.
DOI : 10.1016/j.cell.2010.11.055

URL : http://doi.org/10.1016/j.cell.2010.11.055

J. V. Forment, A. Kaidi, and S. P. Jackson, Chromothripsis and cancer: causes and consequences of chromosome shattering, Nature Reviews Cancer, vol.131, issue.10, pp.663-670, 2012.
DOI : 10.1016/j.cell.2007.12.007

K. Crasta, N. J. Ganem, R. Dagher, A. B. Lantermann, E. V. Ivanova et al., DNA breaks and chromosome pulverization from errors in mitosis, Nature, vol.180, issue.7383, pp.53-58, 2012.
DOI : 10.1083/jcb.200707026

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271137

J. R. Lupski and P. Stankiewicz, Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes, PLoS Genetics, vol.13, issue.6, p.49, 2005.
DOI : 0044-7897(1994)060[0073:BGMAS]2.0.CO;2

URL : http://doi.org/10.1371/journal.pgen.0010049

Y. Okuno, P. J. Hahn, and D. M. Gilbert, Structure of a palindromic amplicon junction implicates microhomology-mediated end joining as a mechanism of sister chromatid fusion during gene amplification, Nucleic Acids Research, vol.32, issue.2, pp.749-756, 2004.
DOI : 10.1093/nar/gkh244

G. R. Bignell, T. Santarius, J. C. Pole, A. P. Butler, J. Perry et al., Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution, Genome Research, vol.17, issue.9, pp.1296-1303, 2007.
DOI : 10.1101/gr.6522707