B. Afzelius, Cilia-related diseases, The Journal of Pathology, vol.55, issue.Suppl 138, p.470, 2004.
DOI : 10.1097/00005072-199609000-00007

S. P. Choksi, G. Lauter, P. Swoboda, and S. Roy, Switching on cilia: transcriptional networks regulating ciliogenesis, Development, vol.141, issue.7, p.1427, 2014.
DOI : 10.1242/dev.074666

W. F. Marshall and C. Kintner, Cilia orientation and the fluid mechanics of development, Current Opinion in Cell Biology, vol.20, issue.1, 2008.
DOI : 10.1016/j.ceb.2007.11.009

J. B. Wallingford, Planar cell polarity signaling, cilia and polarized ciliary beating, Current Opinion in Cell Biology, vol.22, issue.5, p.597, 2010.
DOI : 10.1016/j.ceb.2010.07.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974441

K. Kunimoto, Coordinated Ciliary Beating Requires Odf2-Mediated Polarization of Basal Bodies via Basal Feet, Cell, vol.148, issue.1-2, p.189, 2012.
DOI : 10.1016/j.cell.2011.10.052

URL : http://doi.org/10.1016/j.cell.2011.10.052

B. Guirao, Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia, Nature Cell Biology, vol.3, issue.4, p.341, 2010.
DOI : 10.1007/BF00183177

URL : https://hal.archives-ouvertes.fr/hal-00555153

B. Mitchell, R. Jacobs, J. Li, S. Chien, and C. Kintner, A positive feedback mechanism governs the polarity and motion of motile cilia, Nature, vol.242, issue.7140, 2007.
DOI : 10.1038/nature05771

Y. Okada, Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination, Cell, vol.121, issue.4, p.633, 2005.
DOI : 10.1016/j.cell.2005.04.008

S. Nonaka, H. Shiratori, Y. Saijoh, and H. Hamada, Determination of left???right patterning of the mouse embryo by artificial nodal flow, Nature, vol.118, issue.6893, p.96, 2002.
DOI : 10.1083/JCB.151.3.709

A. Takamatsu, T. Ishikawa, K. Shinohara, and H. Hamada, Asymmetric rotational stroke in mouse node cilia during left-right determination, Physical Review E, vol.87, issue.5, p.50701, 2013.
DOI : 10.1073/pnas.1002128107

URL : http://arxiv.org/pdf/1212.3081

C. D. Wood, T. Nishigaki, T. Furuta, S. A. Baba, and A. Darszon, in flagellar movement and motility in single sea urchin sperm, The Journal of Cell Biology, vol.52, issue.5, p.725, 2005.
DOI : 10.1023/B:JOBB.0000008025.65675.37

URL : http://jcb.rupress.org/content/jcb/169/5/725.full.pdf

M. Böhmer, Ca2+ spikes in the flagellum control chemotactic behavior of sperm, The EMBO Journal, vol.38, issue.15, p.2741, 2005.
DOI : 10.1073/pnas.0135565100

K. Shiba, S. A. Baba, T. Inoue, and M. Yoshida, Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response, Proc. Natl. Acad. Sci. USA 105, p.19312, 2008.
DOI : 10.1016/S0040-4039(03)01598-3

K. Mizuno, A novel neuronal calcium sensor family protein, calaxin, is a potential Ca2+-dependent regulator for the outer arm dynein of metazoan cilia and flagella, Biology of the Cell, vol.36, issue.2, p.91, 2009.
DOI : 10.1111/j.1440-169X.1994.00589.x

K. Mizuno, Calaxin drives sperm chemotaxis by Ca²+-mediated direct modulation of a dynein motor, Proc. Natl. Acad. Sci. USA, p.20497, 2012.

K. Inaba, Calcium sensors of ciliary outer arm dynein: functions and phylogenetic considerations for eukaryotic evolution, Cilia, vol.31, issue.1, p.6, 2015.
DOI : 10.1111/j.0022-3646.1995.00096.x

Y. K. Maruyama, Development of swimming behavior in sea urchin embryos. I., Journal of Experimental Zoology, vol.23, issue.2, p.163, 1981.
DOI : 10.1093/icb/15.3.717

M. Degawa, Y. Mogami, and S. A. Baba, Developmental changes in Ca2+ sensitivity of sea-urchin embryo cilia, Comparative Biochemistry and Physiology Part A: Physiology, vol.85, issue.1, p.83, 1986.
DOI : 10.1016/0300-9629(86)90466-4

W. Auclair and B. W. Siegel, Cilia Regeneration in the Sea Urchin Embryo: Evidence for a Pool of Ciliary Proteins, Science, vol.154, issue.3751, p.913, 1966.
DOI : 10.1126/science.154.3751.913

S. P. Sorokin, Reconstructions of centriole formation and ciliogenesis in mammalian lungs, J. Cell Sci, vol.3, p.207, 1968.

J. A. Anstrom, Organization of the ciliary basal apparatus in embryonic cells of the sea urchin, Lytechinus pictus, Cell & Tissue Research, vol.64, issue.2, p.305, 1992.
DOI : 10.1007/BF00319622

G. Prulie?re, J. Cosson, S. Chevalier, C. Sardet, and J. Chenevert, Atypical protein kinase C controls sea urchin ciliogenesis, Molecular Biology of the Cell, vol.22, issue.12, p.2042, 2011.
DOI : 10.1091/mbc.E10-10-0844

K. Inaba and H. Mohri, Two States of the Conformation of 21S Outer Arm Dynein Coupled with ATP Hydrolysis1, The Journal of Biochemistry, vol.106, issue.2, p.349, 1989.
DOI : 10.1093/oxfordjournals.jbchem.a122856

B. H. Gibbons and I. Gibbons, The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm, J. Cell Sci, vol.13, p.337, 1973.

C. J. Brokaw and R. Kamiya, Bending patterns ofChlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function, Cell Motility and the Cytoskeleton, vol.103, issue.1, p.68, 1987.
DOI : 10.1002/cm.970080110

M. Wirschell, The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans, Nature Genetics, vol.134, issue.3, p.262, 2013.
DOI : 10.1038/nprot.2007.514

S. Gueron and K. Levit-gurevich, Energetic considerations of ciliary beating and the advantage of metachronal coordination, Proc. Natl. Acad. Sci. USA 96, p.12240, 1999.
DOI : 10.1002/cm.970280303

P. Rompolas, R. S. Patel-king, and S. M. King, An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria, Molecular Biology of the Cell, vol.21, issue.21, p.3669, 2010.
DOI : 10.1091/mbc.E10-04-0373

S. Yoshiba, Cilia at the Node of Mouse Embryos Sense Fluid Flow for Left-Right Determination via Pkd2, Science, vol.17, issue.1, p.226, 2012.
DOI : 10.1101/gad.1053803

S. Yaguchi, ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo, Developmental Biology, vol.348, issue.1, p.67, 2010.
DOI : 10.1016/j.ydbio.2010.09.011

K. Shiba, Y. Mogami, and S. A. Baba, Ciliary movement of sea-urchin embryos, Nat. Sci. Re.p Ochanomizu Univ, vol.53, p.49, 2001.