J. Bai, W. C. Tucker, and E. R. Chapman, PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane, Nature Structural & Molecular Biology, vol.11, p.14718921, 2004.

N. Brose, A. G. Petrenko, . Sü, . Tc, and R. Jahn, Synaptotagmin: a calcium sensor on the synaptic vesicle surface, Science, vol.256, p.1589771, 1992.

U. B. Choi, P. Strop, M. Vrljic, S. Chu, A. T. Brunger et al., Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex, Nature Structural & Molecular Biology, vol.17, p.20173763, 2010.

H. De-wit, A. M. Walter, I. Milosevic, A. Gulyá-s-ková-cs, D. Riedel et al., Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes, Cell, vol.138, p.19716167, 2009.

E. L. Elson, Fluorescence correlation spectroscopy: past, present, future, Biophysical Journal, vol.101, p.22208184, 2011.

R. Ferná-ndez-busnadiego, N. Schrod, Z. Kochovski, S. Asano, D. Vanhecke et al., Insights into the molecular organization of the neuron by cryo-electron tomography, Microscopy, vol.60, p.21844585, 2011.

A. Ferná-ndez-chacó-n-r,-kö-nigstorfer, S. H. Gerber, J. García, M. F. Matos, C. F. Stevens et al., Synaptotagmin I functions as a calcium regulator of release probability, Nature, vol.410, p.11242035, 2001.

K. L. Fuson, M. Montes, J. J. Robert, and R. B. Sutton, Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association, Biochemistry, vol.46, p.17956130, 2007.

M. Geppert, Y. Goda, R. E. Hammer, C. Li, T. W. Rosahl et al., Sü dhof TC. 1994. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse, Cell, vol.79, issue.94, p.7954835

C. G. Giraudo, W. S. Eng, T. J. Melia, and J. E. Rothman, A clamping mechanism involved in SNARE-dependent exocytosis, Science, vol.313, p.16794037, 2006.

A. Honigmann, G. Van-den-bogaart, E. Iraheta, H. J. Risselada, D. Milovanovic et al., Phosphatidylinositol 4,5bisphosphate clusters act as molecular beacons for vesicle recruitment, Nature Structural & Molecular Biology, vol.20, p.23665582, 2013.

S. Y. Hua and M. P. Charlton, Activity-dependent changes in partial VAMP complexes during neurotransmitter release, Nature Neuroscience, vol.2, p.10570484, 1999.

E. Hui, J. Bai, and E. R. Chapman, Ca2+-triggered simultaneous membrane penetration of the tandem C2domains of synaptotagmin I, Biophysical Journal, vol.91, p.16782782, 2006.

R. Jahn and D. Fasshauer, Molecular machines governing exocytosis of synaptic vesicles, Nature, vol.490, p.23060190, 2012.

G. H. Kedar, A. S. Munch, J. R. Van-weering, J. Malsam, A. Scheutzow et al., A post-docking role of synaptotagmin 1-C2B domain bottom residues r398/399 in mouse chromaffin cells, Journal of Neuroscience, vol.35, p.26490858, 2015.

S. S. Krishnakumar, D. Kü-mmel, S. J. Jones, D. T. Radoff, K. M. Reinisch et al., Conformational dynamics of calcium-triggered activation of fusion by synaptotagmin, Biophysical Journal, vol.105, p.24314081, 2013.

F. Li, D. Kü-mmel, J. Coleman, K. M. Reinisch, J. E. Rothman et al., A half-zippered SNARE complex represents a functional intermediate in membrane fusion, Journal of the American Chemical Society, vol.136, p.24533674, 2014.

D. Magde, E. L. Elson, and W. W. Webb, Fluorescence correlation spectroscopy. II. An experimental realization, Biopolymers, vol.13, p.4818131, 1974.

T. F. Martin, PI(4,5)P 2-binding effector proteins for vesicle exocytosis, Biochimica et Biophysica Acta (BBA)Molecular and Cell Biology of Lipids, vol.1851, p.25280637, 2015.

R. Mohrmann, H. De-wit, E. Connell, P. S. Pinheiro, C. Leese et al., Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering, Journal of Neuroscience, vol.33, p.24005294, 2013.

P. Montaville, N. Coudevylle, A. Radhakrishnan, A. Leonov, M. Zweckstetter et al., The PIP2 binding mode of the C2 domains of rabphilin-3A, Protein Science, vol.17, p.18434502, 2008.

B. E. Paddock, Z. Wang, L. M. Biela, K. Chen, M. D. Getzy et al., Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo, Journal of Neuroscience, vol.31, p.21307261, 2011.

D. Parisotto, J. Malsam, A. Scheutzow, and J. M. Krause, SNAREpin assembly by Munc18-1 requires previous vesicle docking by synaptotagmin 1, Journal of Biological Chemistry, vol.287, p.22810233, 2012.

Y. Park, J. M. Hernandez, G. Van-den-bogaart, S. Ahmed, M. Holt et al., Controlling synaptotagmin activity by electrostatic screening, Nature Structural & Molecular Biology, vol.19, p.22940675, 2012.

A. Pé-rez-lara, A. Thapa, S. B. Nyenhuis, D. A. Nyenhuis, P. Halder et al., PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium, vol.5, p.27791979, 2016.

J. S. Rhee, L. Y. Li, O. H. Shin, J. C. Rah, J. Rizo et al., Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1, PNAS, vol.102, p.16352718, 2005.

J. Ries and P. Schwille, Fluorescence correlation spectroscopy, BioEssays, vol.34, p.22415816, 2012.

J. Rizo and J. Xu, The synaptic vesicle release machinery, Annual Review of Biophysics, vol.44, p.26098518, 2015.

T. Sö-llner, M. K. Bennett, S. W. Whiteheart, R. H. Scheller, and J. E. Rothman, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion, Cell, vol.75, p.8221884, 1993.

T. Sö-llner, S. W. Whiteheart, M. Brunner, H. Erdjument-bromage, S. Geromanos et al., SNAP receptors implicated in vesicle targeting and fusion, Nature, vol.362, p.8455717, 1993.

T. C. Sü-dhof and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, vol.323, p.19164740, 2009.

T. C. Sü-dhof, Neurotransmitter release: the last millisecond in the life of a synaptic vesicle, Neuron, vol.80, p.24183019, 2013.

S. Takamori, M. Holt, K. Stenius, E. A. Lemke, M. Grønborg et al., Molecular anatomy of a trafficking organelle, Cell, vol.127, p.17110340, 2006.

R. M. Thaokar, In: Brownian Motion of a Torus, Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp.650-657, 2008.

A. Torrecillas, J. Laynez, S. Mené-ndez-m,-corbalá-n-garcía, J. C. Gó-mez-ferná-ndez, G. Bogaart et al., Calorimetric study of the interaction of the C2 domains of classical protein kinase C isoenzymes with Ca2+ and phospholipids, PMID: 15362857 van den, vol.43, p.22447935, 2004.

W. Vennekate, S. Schrö-der, C. C. Lin, G. Van-den-bogaart, M. Grunwald et al., Cis-and transmembrane interactions of synaptotagmin-1, PNAS, vol.109, p.22711810, 2012.

A. M. Walter, K. Wiederhold, D. Bruns, D. Fasshauer, and J. B. Sørensen, Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis, The Journal of Cell Biology, vol.188, p.20142423, 2010.

J. Wang, O. Bello, S. M. Auclair, J. Wang, J. Coleman et al., Calcium sensitive ring-like oligomers formed by synaptotagmin, PNAS, vol.111, p.25201968, 2014.

Z. Wang, H. Liu, Y. Gu, and E. R. Chapman, Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion, The Journal of Cell Biology, vol.195, pp.221841-97, 2011.

B. G. Wilhelm, S. Mandad, S. Truckenbrodt, K. Krö-hnert, C. Schä-fer et al., Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins, Science, vol.344, p.24876496, 2014.

M. N. Zanetti, O. D. Bello, J. Wang, J. Coleman, Y. Cai et al., Ring-like oligomers of Synaptotagmins and related C2 domain proteins, vol.5, p.27434670, 2016.

Q. Zhou, Y. Lai, T. Bacaj, M. Zhao, A. Y. Lyubimov et al., Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis, Nature, vol.525, pp.62-67, 2015.