Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy

Abstract : Periodontitis is characterized by the loss of the supporting tissues of the teeth in an inflammatory-infectious context. The diagnosis relies on clinical and X-ray examination. Unfortunately, clinical signs of tissue destruction occur late in the disease progression. Therefore, it is mandatory to identify reliable biomarkers to facilitate a better and earlier management of this disease. To this end, saliva represents a promising fluid for identification of biomarkers as metabolomic fingerprints. The present study used high-resolution 1H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical analysis to identify the metabolic signature of active periodontitis. The metabolome of stimulated saliva of 26 patients with generalized periodontitis (18 chronic and 8 aggressive) was compared to that of 25 healthy controls. Principal Components Analysis (PCA), performed with clinical variables, indicated that the patient population was homogeneous, demonstrating a strong correlation between the clinical and the radiological variables used to assess the loss of periodontal tissues and criteria of active disease. Orthogonal Projection to Latent Structure (OPLS) analysis showed that patients with periodontitis can be discriminated from controls on the basis of metabolite concentrations in saliva with satisfactory explained variance (R2X = 0.81 and R2Y = 0.61) and predictability (Q2Y = 0.49, CV-AUROC = 0.94). Interestingly, this discrimination was irrespective of the type of generalized periodontitis, i.e. chronic or aggressive. Among the main discriminating metabolites were short chain fatty acids as butyrate, observed in higher concentrations, and lactate, γ-amino-butyrate, methanol, and threonine observed in lower concentrations in periodontitis. The association of lactate, GABA, and butyrate to generate an aggregated variable reached the best positive predictive value for diagnosis of periodontitis. In conclusion, this pilot study showed that 1H-NMR spectroscopy analysis of saliva could differentiate patients with periodontitis from controls. Therefore, this simple, robust, non-invasive method, may offer a significant help for early diagnosis and follow-up of periodontitis.
Type de document :
Article dans une revue
PLoS ONE, Public Library of Science, 2017, 12 (8), pp.e0182767. 〈10.1371/journal.pone.0182767〉
Liste complète des métadonnées

Littérature citée [69 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01590616
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mardi 19 septembre 2017 - 17:41:00
Dernière modification le : jeudi 11 janvier 2018 - 06:23:33

Fichier

journal.pone.0182767.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Matthias Rzeznik, Mohamed Nawfal Triba, Pierre Levy, Sébastien Jungo, Eliot Botosoa, et al.. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PLoS ONE, Public Library of Science, 2017, 12 (8), pp.e0182767. 〈10.1371/journal.pone.0182767〉. 〈hal-01590616〉

Partager

Métriques

Consultations de la notice

80

Téléchargements de fichiers

14