M. Gardiner-garden and M. Frommer, CpG Islands in vertebrate genomes, Journal of Molecular Biology, vol.196, issue.2, pp.261-282, 1987.
DOI : 10.1016/0022-2836(87)90689-9

R. S. Illingworth, U. Gruenewald-schneider, S. Webb, A. R. Kerr, K. D. James et al., Orphan CpG Islands Identify Numerous Conserved Promoters in the Mammalian Genome, PLoS Genetics, vol.25, issue.9, p.1001134, 2010.
DOI : 10.1371/journal.pgen.1001134.s010

URL : http://doi.org/10.1371/journal.pgen.1001134

A. M. Deaton, S. Webb, A. R. Kerr, R. S. Illingworth, J. Guy et al., Cell type-specific DNA methylation at intragenic CpG islands in the immune system, Genome Research, vol.21, issue.7, 2011.
DOI : 10.1101/gr.118703.110

M. N. Davies, M. Volta, R. Pidsley, K. Lunnon, A. Dixit et al., Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood, Genome Biology, vol.13, issue.6, p.43, 2012.
DOI : 10.1186/1471-2105-9-559

P. Liang, F. Song, S. Ghosh, E. Morien, M. Qin et al., Genome-wide survey reveals dynamic widespread tissue-specific changes in DNA methylation during development, BMC Genomics, vol.73, issue.1, p.231, 2011.
DOI : 10.1016/0092-8674(93)90160-R

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118215

A. K. Maunakea, R. P. Nagarajan, M. Bilenky, T. J. Ballinger, C. Souza et al., Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, vol.45, issue.7303, pp.253-257, 2010.
DOI : 10.1038/nature09165

R. A. Irizarry, C. Ladd-acosta, B. Wen, Z. Wu, C. Montano et al., The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores, Nature Genetics, vol.57, issue.2, pp.178-186, 2009.
DOI : 10.1093/bioinformatics/btl567

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729128

A. Doi, I. H. Park, B. Wen, P. Murakami, M. J. Aryee et al., Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts, Nature Genetics, vol.4, issue.12, pp.1350-1353, 2009.
DOI : 10.1038/ng.471

E. Dudziec, S. Miah, H. M. Choudhry, H. C. Owen, S. Blizard et al., Hypermethylation of CpG Islands and Shores around Specific MicroRNAs and Mirtrons Is Associated with the Phenotype and Presence of Bladder Cancer, Clinical Cancer Research, vol.17, issue.6, pp.1287-1296, 2011.
DOI : 10.1158/1078-0432.CCR-10-2017

A. Feber, G. A. Wilson, L. Zhang, N. Presneau, B. Idowu et al., Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors, Genome Research, vol.21, issue.4, pp.515-524, 2011.
DOI : 10.1101/gr.109678.110

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065699

H. Ji, L. I. Ehrlich, J. Seita, P. Murakami, A. Doi et al., Comprehensive methylome map of lineage commitment from haematopoietic progenitors, Nature, vol.107, issue.7313, pp.338-342, 2010.
DOI : 10.1101/sqb.2008.73.031

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956609

R. S. Lee, K. L. Tamashiro, M. J. Aryee, P. Murakami, F. Seifuddin et al., Adaptation of the CHARM DNA methylation platform for the rat genome reveals novel brain region-specific differences, Epigenetics, vol.12, issue.11, pp.1378-1390, 2011.
DOI : 10.1093/biostatistics/kxq055

X. Rao, J. Evans, H. Chae, J. Pilrose, S. Kim et al., CpG island shore methylation regulates caveolin-1 expression in breast cancer, Oncogene, vol.131, issue.38, pp.4519-4528, 2012.
DOI : 10.1007/s10549-011-1751-4

URL : http://www.nature.com/onc/journal/v32/n38/pdf/onc2012474a.pdf

D. Zhang, L. Cheng, J. A. Badner, C. Chen, Q. Chen et al., Genetic Control of Individual Differences in Gene-Specific Methylation in Human Brain, The American Journal of Human Genetics, vol.86, issue.3, pp.411-419, 2010.
DOI : 10.1016/j.ajhg.2010.02.005

S. L. Merbs, M. A. Khan, L. Hackler, . Jr, V. F. Oliver et al., Cell-Specific DNA Methylation Patterns of Retina-Specific Genes, PLoS ONE, vol.90, issue.3, p.32602, 2012.
DOI : 10.1371/journal.pone.0032602.s005

URL : http://doi.org/10.1371/journal.pone.0032602

S. N. Diniz, K. P. Pendeloski, A. Morgun, I. Chepelev, M. Gerbase-delima et al., Tissue-specific expression of IL-15RA alternative splicing transcripts and its regulation by DNA methylation. Eur, Cytokine Netw, vol.21, pp.308-318, 2010.

V. F. Oliver, J. Wan, S. Agarwal, D. J. Zack, J. Qian et al., A novel methyl-binding domain protein enrichment method for identifying genome-wide tissue-specific DNA methylation from nanogram DNA samples, Epigenetics & Chromatin, vol.6, issue.1, p.17, 2013.
DOI : 10.1101/gr.080721.108

URL : https://hal.archives-ouvertes.fr/hal-01549207

C. Anastasiadou, A. Malousi, N. Maglaveras, and S. Kouidou, Human Epigenome Data Reveal Increased CpG Methylation in Alternatively Spliced Sites and Putative Exonic Splicing Enhancers, DNA and Cell Biology, vol.30, issue.5, pp.267-275, 2011.
DOI : 10.1089/dna.2010.1094

R. Andersson, S. Enroth, A. Rada-iglesias, C. Wadelius, and J. Komorowski, Nucleosomes are well positioned in exons and carry characteristic histone modifications, Genome Research, vol.19, issue.10, pp.1732-1741, 2009.
DOI : 10.1101/gr.092353.109

URL : http://genome.cshlp.org/content/19/10/1732.full.pdf

R. K. Chodavarapu, S. Feng, Y. V. Bernatavichute, P. Y. Chen, H. Stroud et al., Relationship between nucleosome positioning and DNA methylation, Nature, vol.5, issue.7304, pp.388-392, 2010.
DOI : 10.1017/S0033583501003699

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964354

J. K. Choi, J. B. Bae, J. Lyu, T. Y. Kim, Y. J. Kim et al., Nucleosome deposition and DNA methylation at coding region boundaries DNAmethylation effect on co-transcriptional splicing is dependent on GC-architecture of the exon-intron structure, Genome Biol. Genome Res, vol.10, issue.23, pp.789-799, 2009.

P. Kolasinska-zwierz, T. Down, I. Latorre, T. Liu, X. S. Liu et al., Differential chromatin marking of introns and expressed exons by H3K36me3, Nature Genetics, vol.7, issue.3, pp.376-381, 2009.
DOI : 10.1186/gb-2007-8-8-r178

S. Schwartz, E. Meshorer, and G. Ast, Chromatin organization marks exon-intron structure, Nature Structural & Molecular Biology, vol.448, issue.9, pp.990-995, 2009.
DOI : 10.1128/MCB.10.1.84

Y. Zhou, Y. Lu, and W. Tian, Epigenetic features are significantly associated with alternative splicing, BMC Genomics, vol.13, issue.1, p.123, 2012.
DOI : 10.1186/1471-2164-13-123

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3362759

S. Shukla, E. Kavak, M. Gregory, M. Imashimizu, B. Shutinoski et al., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing, Nature, vol.17, issue.7371, pp.74-79, 2011.
DOI : 10.1093/bioinformatics/17.6.566

A. T. Hark, C. J. Schoenherr, D. J. Katz, R. S. Ingram, J. M. Levorse et al., CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus, Nature, vol.405, pp.486-489, 2000.

R. A. Irizarry, C. Ladd-acosta, B. Carvalho, H. Wu, S. A. Brandenburg et al., Comprehensive high-throughput arrays for relative methylation (CHARM), Genome Research, vol.18, issue.5, pp.780-790, 2008.
DOI : 10.1101/gr.7301508

J. Wan, T. Masuda, L. Hackler, . Jr, K. M. Torres et al., Dynamic usage of alternative splicing exons during mouse retina development, Nucleic Acids Research, vol.39, issue.18, pp.7920-7930, 2011.
DOI : 10.1093/nar/gkr545

URL : https://academic.oup.com/nar/article-pdf/39/18/7920/16778703/gkr545.pdf

M. J. Aryee, Z. Wu, C. Ladd-acosta, B. Herb, A. P. Feinberg et al., Accurate genome-scale percentage DNA methylation estimates from microarray data, Biostatistics, vol.12, issue.2, pp.197-210, 2011.
DOI : 10.1093/biostatistics/kxq055

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062148

L. R. Meyer, A. S. Zweig, A. S. Hinrichs, D. Karolchik, R. M. Kuhn et al., The UCSC Genome Browser database: extensions and updates 2013, Nucleic Acids Research, vol.41, issue.D1, pp.64-69, 2013.
DOI : 10.1093/nar/gks1048

URL : https://academic.oup.com/nar/article-pdf/41/D1/D64/3594946/gks1048.pdf

M. Goujon, H. Mcwilliam, W. Li, F. Valentin, S. Squizzato et al., A new bioinformatics analysis tools framework at EMBL-EBI, Nucleic Acids Research, vol.38, issue.Web Server, pp.695-699, 2010.
DOI : 10.1093/nar/gkq313

URL : https://academic.oup.com/nar/article-pdf/38/suppl_2/W695/3832907/gkq313.pdf

L. Hackler, . Jr, T. Masuda, V. F. Oliver, S. L. Merbs et al., Use of Laser Capture Microdissection for Analysis of Retinal mRNA/miRNA Expression and DNA Methylation, Methods Mol. Biol, vol.884, pp.289-304, 2012.
DOI : 10.1007/978-1-61779-848-1_21

M. F. Berger, A. A. Philippakis, A. M. Qureshi, F. S. He, P. W. Estep et al., Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities, Nature Biotechnology, vol.77, issue.11, pp.1429-1435, 2006.
DOI : 10.1128/MCB.9.7.2944

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419707

V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock et al., TRANSFAC(R): transcriptional regulation, from patterns to profiles, Nucleic Acids Research, vol.31, issue.1, pp.374-378, 2003.
DOI : 10.1093/nar/gkg108

S. Gupta, J. A. Stamatoyannopoulos, T. L. Bailey, and W. S. Noble, Quantifying similarity between motifs, Genome Biology, vol.8, issue.2, p.24, 2007.
DOI : 10.1186/gb-2007-8-2-r24

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2007-8-2-r24?site=genomebiology.biomedcentral.com

R. C. Davies, C. Calvio, E. Bratt, S. H. Larsson, A. I. Lamond et al., WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes, Genes & Development, vol.12, issue.20, pp.3217-3225, 1998.
DOI : 10.1101/gad.12.20.3217

M. Alberstein, M. Amit, K. Vaknin, A. Donnell, C. Farhy et al., Regulation of transcription of the RNA splicing factor hSlu7 by Elk-1 and Sp1 affects alternative splicing, RNA, vol.13, issue.11, 1988.
DOI : 10.1261/rna.492907

. Downloaded-from-https, Integrative-analysis-of-tissue-specific by BIUS Jussieu user on, 2017.

A. Zemach, I. E. Mcdaniel, P. Silva, and D. Zilberman, Genome-Wide Evolutionary Analysis of Eukaryotic DNA Methylation, Science, vol.107, issue.1-3, pp.916-919, 2010.
DOI : 10.1023/A:1003990818251

M. Cowley, A. J. Wood, S. Bohm, R. Schulz, and R. J. Oakey, Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus, Nucleic Acids Research, vol.40, issue.18, pp.8917-8926, 2012.
DOI : 10.1093/nar/gks654

K. Flores, F. Wolschin, J. J. Corneveaux, A. N. Allen, M. J. Huentelman et al., Genome-wide association between DNA methylation and alternative splicing in an invertebrate, BMC Genomics, vol.13, issue.1, p.480, 2012.
DOI : 10.1371/journal.pcbi.1000598

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526459

A. Malousi and S. Kouidou, DNA hypermethylation of alternatively spliced and repeat sequences in humans, Molecular Genetics and Genomics, vol.13, issue.1, pp.631-642, 2012.
DOI : 10.1186/1471-2164-13-123

S. Sati, V. S. Tanwar, K. A. Kumar, A. Patowary, V. Jain et al., High Resolution Methylome Map of Rat Indicates Role of Intragenic DNA Methylation in Identification of Coding Region, PLoS ONE, vol.6, issue.2, p.31621, 2012.
DOI : 10.1371/journal.pone.0031621.s018

A. Pandya-jones and D. L. Black, Co-transcriptional splicing of constitutive and alternative exons, RNA, vol.15, issue.10, pp.1896-1908, 2009.
DOI : 10.1261/rna.1714509

URL : http://rnajournal.cshlp.org/content/15/10/1896.full.pdf

C. G. Spruijt, F. Gnerlich, A. H. Smits, T. Pfaffeneder, P. W. Jansen et al., Dynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives, Cell, vol.152, issue.5, pp.1146-1159, 2013.
DOI : 10.1016/j.cell.2013.02.004

URL : http://doi.org/10.1016/j.cell.2013.02.004