H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking, Nature, vol.90, issue.5374, pp.500-504, 1972.
DOI : 10.1038/239500a0

S. H. Chalasani, Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans, Nature, vol.28, issue.7166, pp.63-70, 2007.
DOI : 10.1038/nature06292

A. Ward, J. Liu, Z. Feng, and X. Z. Xu, Light-sensitive neurons and channels mediate phototaxis in C. elegans, Nature Neuroscience, vol.31, issue.8, pp.916-922, 2008.
DOI : 10.1152/physrev.00008.2002

A. Gomez-marin, G. J. Stephens, and M. Louis, Active sampling and decision making in Drosophila chemotaxis, Nature Communications, vol.118, p.441, 2011.
DOI : 10.1038/nmeth.1554

URL : http://www.nature.com/articles/ncomms1455.pdf

R. Gepner, Computations underlying Drosophila photo-taxis, odor-taxis, and multi-sensory integration, Elife, vol.4, p.6229, 2015.
DOI : 10.7554/elife.06229

URL : http://doi.org/10.7554/elife.06229

J. Porter, Mechanisms of scent-tracking in humans, Nature Neuroscience, vol.170, issue.1, pp.27-29, 2007.
DOI : 10.1016/j.neuron.2005.06.028

M. B. Ahrens, Brain-wide neuronal dynamics during motor adaptation in zebrafish, Nature, vol.63, pp.471-477, 2012.
DOI : 10.1016/j.neuron.2009.08.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618960

T. Panier, Fast functional imaging of multiple brain regions in intact zebrafish larvae using Selective Plane Illumination Microscopy, Frontiers in Neural Circuits, vol.7, p.65, 2013.
DOI : 10.3389/fncir.2013.00065

URL : https://hal.archives-ouvertes.fr/hal-00904468

C. E. Feierstein, R. Portugues, and M. B. Orger, Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish, Neuroscience, vol.296, pp.26-38, 2015.
DOI : 10.1016/j.neuroscience.2014.11.046

S. E. Brockerhoff, A behavioral screen for isolating zebrafish mutants with visual system defects., Proc. Natl Acad. Sci. USA 92, pp.10545-10549, 1995.
DOI : 10.1073/pnas.92.23.10545

URL : http://www.pnas.org/content/92/23/10545.full.pdf

M. B. Orger and H. Baier, Channeling of red and green cone inputs to the zebrafish optomotor response, Visual Neuroscience, vol.32, issue.03, pp.275-281, 2005.
DOI : 10.1016/S0896-6273(00)81036-3

H. A. Burgess, H. Schoch, and M. Granato, Distinct Retinal Pathways Drive Spatial Orientation Behaviors in Zebrafish Navigation, Current Biology, vol.20, issue.4, pp.381-386, 2010.
DOI : 10.1016/j.cub.2010.01.022

URL : http://doi.org/10.1016/j.cub.2010.01.022

X. Chen and F. Engert, Navigational strategies underlying phototaxis in larval zebrafish, Frontiers in Systems Neuroscience, vol.461, issue.14, p.39, 2014.
DOI : 10.1038/nature08323

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971168

A. Miri, Spatial gradients and multidimensional dynamics in a neural integrator circuit, Nature Neuroscience, vol.6, issue.9, pp.1150-1159, 2011.
DOI : 10.1038/nn1109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624014

K. Daie, M. S. Goldman, and E. R. Aksay, Spatial Patterns of Persistent Neural Activity Vary with the Behavioral Context of Short-Term Memory, Neuron, vol.85, issue.4, pp.847-860, 2015.
DOI : 10.1016/j.neuron.2015.01.006

M. M. Lee, A. B. Arrenberg, and E. R. Aksay, A Structural and Genotypic Scaffold Underlying Temporal Integration, Journal of Neuroscience, vol.35, issue.20, pp.7903-7920, 2015.
DOI : 10.1523/JNEUROSCI.3045-14.2015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438132

M. Joshua and S. G. Lisberger, A tale of two species: Neural integration in zebrafish and monkeys, Neuroscience, vol.296, pp.80-91, 2015.
DOI : 10.1016/j.neuroscience.2014.04.048

D. L. Sparks, The brainstem control of saccadic eye movements, Nature Reviews Neuroscience, vol.1, issue.12, pp.952-964, 2002.
DOI : 10.1016/S0079-6123(08)62859-9

P. J. Gonçalves, A. B. Arrenberg, B. Hablitzel, H. Baier, and C. K. Machens, Optogenetic perturbations reveal the dynamics of an oculomotor integrator, Frontiers in Neural Circuits, vol.8, p.10, 2014.
DOI : 10.3389/fncir.2014.00010

A. Miri, K. Daie, R. D. Burdine, E. Aksay, and D. W. Tank, Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution, Journal of Neurophysiology, vol.105, issue.2, pp.964-980, 2011.
DOI : 10.1152/jn.00702.2010

O. Randlett, Whole-brain activity mapping onto a zebrafish brain atlas, Nature Methods, vol.126, issue.11, pp.1039-1046, 2015.
DOI : 10.1002/hbm.1024

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710481

P. J. Schoonheim, A. B. Arrenberg, F. Del-bene, and H. Baier, Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish, Journal of Neuroscience, vol.30, issue.20, pp.7111-7120, 2010.
DOI : 10.1523/JNEUROSCI.5193-09.2010

M. B. Ahrens, Whole-brain functional imaging at cellular resolution using light-sheet microscopy, Nature Methods, vol.485, issue.5, pp.413-420, 2013.
DOI : 10.1152/jn.90941.2008

C. A. Scudder, C. S. Kaneko, and A. Fuchs, The brainstem burst generator for saccadic eye movements, Experimental Brain Research, vol.142, issue.4, pp.439-462, 2002.
DOI : 10.1007/s00221-001-0912-9

T. W. Dunn, Author response, eLife, vol.12, p.12741, 2016.
DOI : 10.7554/eLife.12741.032

A. Berthoz and A. Grantyn, Neuronal mechanisms underlying eye-head coordination, Prog. Brain Res, vol.64, pp.325-343, 1986.
DOI : 10.1016/S0079-6123(08)63427-5

W. Einhäuser, Eye-Head Coordination during Free Exploration in Human and Cat, Annals of the New York Academy of Sciences, vol.56, issue.1, pp.353-366, 2009.
DOI : 10.1007/978-1-4899-5379-7

S. Wolf, Whole-brain functional imaging with two-photon light-sheet microscopy, Nature Methods, vol.23, issue.5, pp.379-380, 2015.
DOI : 10.1016/j.conb.2009.10.007

URL : https://hal.archives-ouvertes.fr/hal-01168353

T. G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, The Journal of Physiology, vol.48, issue.1, pp.18-46, 1914.
DOI : 10.1113/jphysiol.1914.sp001646

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, Journal of Theoretical Biology, vol.16, issue.1, pp.15-42, 1967.
DOI : 10.1016/0022-5193(67)90051-3

T. Roenneberg, Z. Dragovic, and M. Merrow, Demasking biological oscillators: Properties and principles of entrainment exemplified by the Neurospora circadian clock, Proc. Natl Acad. Sci. USA, pp.7742-7747, 2005.
DOI : 10.1177/074873002129002375

C. R. Laing and C. C. Chow, A spiking neuron model for binocular rivalry, Journal of Computational Neuroscience, vol.12, issue.1, pp.39-53, 2002.
DOI : 10.1023/A:1014942129705

S. Vattikuti, Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory, PLOS Computational Biology, vol.2, issue.5, p.1004903, 2016.
DOI : 10.1371/journal.pcbi.1004903.s004

URL : http://doi.org/10.1371/journal.pcbi.1004903

A. Kinkhabwala, A structural and functional ground plan for neurons in the hindbrain of zebrafish, Proc. Natl Acad. Sci, pp.1164-1169, 2011.
DOI : 10.1016/j.stem.2007.11.002

R. Portugues, C. E. Feierstein, F. Engert, and M. B. Orger, Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior, Neuron, vol.81, issue.6, 2014.
DOI : 10.1016/j.neuron.2014.01.019

URL : http://doi.org/10.1016/j.neuron.2014.01.019

S. Martinez-conde and S. L. Macknik, Fixational eye movements across vertebrates: Comparative dynamics, physiology, and perception, Journal of Vision, vol.8, issue.14, p.28, 2008.
DOI : 10.1167/8.14.28

URL : http://jov.arvojournals.org/data/journals/jov/933528/jov-8-14-28.pdf

E. Marder and R. L. Calabrese, Principles of rhythmic motor pattern generation, Physiol. Rev, vol.76, pp.687-717, 1996.

D. M. Blitz and M. P. Nusbaum, Neural circuit flexibility in a small sensorimotor system, Current Opinion in Neurobiology, vol.21, issue.4, pp.544-552, 2011.
DOI : 10.1016/j.conb.2011.05.019

K. G. Pearson, Generating the walking gait: role of sensory feedback, Prog. Brain Res, vol.143, pp.123-129, 2004.
DOI : 10.1016/S0079-6123(03)43012-4

I. Tastekin, Role of the Subesophageal Zone in Sensorimotor Control of Orientation in Drosophila Larva, Current Biology, vol.25, issue.11, pp.1448-1460, 2015.
DOI : 10.1016/j.cub.2015.04.016

C. E. Schroeder, D. A. Wilson, T. Radman, H. Scharfman, and P. Lakatos, Dynamics of Active Sensing and perceptual selection, Current Opinion in Neurobiology, vol.20, issue.2, pp.172-176, 2010.
DOI : 10.1016/j.conb.2010.02.010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963579

S. Ranade, B. Hangya, and A. Kepecs, Multiple Modes of Phase Locking between Sniffing and Whisking during Active Exploration, Journal of Neuroscience, vol.33, issue.19, pp.8250-8256, 2013.
DOI : 10.1523/JNEUROSCI.3874-12.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785235

J. Ito, P. Maldonado, W. Singer, and S. Grün, Saccade-Related Modulations of Neuronal Excitability Support Synchrony of Visually Elicited Spikes, Cerebral Cortex, vol.21, issue.11, pp.2482-2497, 2011.
DOI : 10.1093/cercor/bhr020