F. Pati, Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink, Nature Communications, vol.30, p.3935, 2014.
DOI : 10.1016/j.biomaterials.2009.08.057

G. G. Giobbe, Functional differentiation of human pluripotent stem cells on a chip, Nature Methods, vol.6416, issue.7, pp.637-640, 2015.
DOI : 10.1006/meth.2001.1262

M. E. Todhunter, Programmed synthesis of three-dimensional tissues, Nature Methods, vol.17, issue.10, pp.975-981, 2015.
DOI : 10.1016/j.biomaterials.2007.07.052

P. A. Parmar, Temporally degradable collagen???mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells, Biomaterials, vol.99, pp.56-71, 2016.
DOI : 10.1016/j.biomaterials.2016.05.011

D. E. Discher, D. J. Mooney, and P. W. Zandstra, Growth Factors, Matrices, and Forces Combine and Control Stem Cells, Science, vol.106, issue.2, pp.1673-1677, 2009.
DOI : 10.1073/pnas.0808932106

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847855

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix Elasticity Directs Stem Cell Lineage Specification, Cell, vol.126, issue.4, pp.677-689, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

N. D. Evans, Substrate stiffness affects early differentiation events in embryonic stem cells, Eur. Cell. Mater, vol.18, p.13, 2009.

S. Gobaa, S. Hoehnel, and M. Lutolf, Substrate elasticity modulates the responsiveness of mesenchymal stem cells to commitment cues, Integr. Biol., vol.11, issue.10, pp.1135-1142, 2015.
DOI : 10.1038/nmat3339

Y. Sun, Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem??cells, Nature Materials, vol.13, issue.6, pp.599-604, 2014.
DOI : 10.1038/nmat2732

A. J. Keung, P. Asuri, S. Kumar, and D. V. Schaffer, Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells, Integrative Biology, vol.90, issue.9, pp.1049-1058, 2012.
DOI : 10.1529/biophysj.105.067496

L. Przybyla, J. N. Lakins, and V. M. Weaver, Tissue Mechanics Orchestrate Wnt-Dependent Human Embryonic Stem Cell Differentiation, Cell Stem Cell, vol.19, issue.4, pp.462-475, 2016.
DOI : 10.1016/j.stem.2016.06.018

Y. Huang, Effect of Cyclic Strain on Cardiomyogenic Differentiation of Rat Bone Marrow Derived Mesenchymal Stem Cells, PLoS ONE, vol.12, issue.4, p.34960, 2012.
DOI : 10.1371/journal.pone.0034960.t001

L. Adamo, Biomechanical forces promote embryonic haematopoiesis, Nature, vol.80, issue.7250, pp.1131-1135, 2009.
DOI : 10.1152/ajpheart.00869.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782763

K. Yamamoto, Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro, AJP: Heart and Circulatory Physiology, vol.288, issue.4, pp.1915-1924, 2005.
DOI : 10.1152/ajpheart.00956.2004

L. R. Geuss and L. J. Suggs, Making cardiomyocytes: How mechanical stimulation can influence differentiation of pluripotent stem cells, Biotechnology Progress, vol.137, issue.5, pp.1089-1096, 2013.
DOI : 10.1242/dev.050146

S. Gwak, The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes, Biomaterials, vol.29, issue.7, pp.844-856, 2008.
DOI : 10.1016/j.biomaterials.2007.10.050

K. Kurpinski, J. Chu, C. Hashi, and S. Li, Anisotropic mechanosensing by mesenchymal stem cells, Proc. Natl Acad. Sci. USA 103, pp.16095-16100, 2006.
DOI : 10.1074/jbc.M407368200

URL : http://www.pnas.org/content/103/44/16095.full.pdf

F. Chowdhury, Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem??cells, Nature Materials, vol.40, issue.1, pp.82-88, 2010.
DOI : 10.1083/jcb.200810002

Y. Uda, Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells, Biochemical and Biophysical Research Communications, vol.415, issue.2, pp.396-400, 2011.
DOI : 10.1016/j.bbrc.2011.10.080

D. Pelaez, C. Huang, C. Cheung, and H. S. , Cyclic Compression Maintains Viability and Induces Chondrogenesis of Human Mesenchymal Stem Cells in Fibrin Gel Scaffolds, Stem Cells and Development, vol.18, issue.1, pp.93-102, 2009.
DOI : 10.1089/scd.2008.0030

J. Henstock and A. Haj, Controlled mechanotransduction in therapeutic MSCs: can remotely controlled magnetic nanoparticles regenerate bones?, Regenerative Medicine, vol.3, issue.4, pp.377-380, 2015.
DOI : 10.1016/j.arthro.2007.08.017

O. B. Matthys, T. A. Hookway, and T. C. Mcdevitt, Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells, Current Stem Cell Reports, vol.18, issue.9???10, pp.43-51, 2016.
DOI : 10.1089/ten.tea.2011.0341

Y. Poh, Generation of organized germ layers from a single mouse embryonic stem cell, Nature Communications, vol.168, p.4000, 2014.
DOI : 10.1006/dbio.1995.1085

A. M. Bratt-leal, K. L. Kepple, R. L. Carpenedo, M. T. Cooke, and T. C. Mcdevitt, Magnetic manipulation and spatial patterning of multi-cellular stem cell aggregates, Integrative Biology, vol.22, issue.12, pp.1224-1232, 2011.
DOI : 10.1002/adma.201002873

V. Mironov, Organ printing: Tissue spheroids as building blocks, Biomaterials, vol.30, issue.12, pp.2164-2174, 2009.
DOI : 10.1016/j.biomaterials.2008.12.084

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773699

E. T. Ahrens and J. W. Bulte, Tracking immune cells in vivo using magnetic resonance imaging, Nature Reviews Immunology, vol.7965, issue.10, pp.755-763, 2013.
DOI : 10.2967/jnumed.112.106146

C. Berman, S. M. Walczak, P. Bulte, and J. W. , Tracking stem cells using magnetic nanoparticles, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.24, issue.4, pp.343-355, 2011.
DOI : 10.1002/nbm.1570

R. Harrison, Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications, Journal of Tissue Engineering and Regenerative Medicine, vol.5, issue.202, p.2133, 2016.
DOI : 10.1021/nn103077k

Y. Tang, MRI/SPECT/Fluorescent Tri-Modal Probe for Evaluating the Homing and Therapeutic Efficacy of Transplanted Mesenchymal Stem Cells in a Rat Ischemic Stroke Model, Advanced Functional Materials, vol.44, issue.7, pp.1024-1034, 2015.
DOI : 10.1161/STROKEAHA.112.670299

E. Haj and A. J. , model of mesenchymal stem cell targeting using magnetic particle labelling, Journal of Tissue Engineering and Regenerative Medicine, vol.13, issue.12, pp.724-733, 2015.
DOI : 10.1091/mbc.E02-02-0105

N. Landázuri, Magnetic Targeting of Human Mesenchymal Stem Cells with Internalized Superparamagnetic Iron Oxide Nanoparticles, Small, vol.126, issue.23, pp.4017-4026, 2013.
DOI : 10.1021/ja0380852

K. Cheng, Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit after Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion, Cell Transplantation, vol.33, issue.6, pp.1121-1135, 2012.
DOI : 10.1006/jmcc.2001.1367

J. A. Kim, High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture, Biomaterials, vol.34, issue.34, pp.8555-8563, 2013.
DOI : 10.1016/j.biomaterials.2013.07.056

B. Mattix, Biological magnetic cellular spheroids as building blocks for tissue engineering, Acta Biomaterialia, vol.10, issue.2, pp.623-629, 2014.
DOI : 10.1016/j.actbio.2013.10.021

G. R. Souza, Three-dimensional tissue culture based on magnetic cell levitation, Nature Nanotechnology, vol.96, issue.4, pp.291-296, 2010.
DOI : 10.1016/j.bbadis.2006.09.011

J. Lee, A. Ito, and H. Honda, Construction of Functional Cardiovascular Tissues Using Magnetic Nanoparticles, Cardiac Regeneration Using Stem Cells, pp.221-228, 2013.
DOI : 10.1201/b14990-14

T. Kito, iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis, Scientific Reports, vol.286, issue.1, p.1418, 2013.
DOI : 10.1074/jbc.M111.245985

A. S. Arbab, Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells, NMR in Biomedicine, vol.102, issue.8, pp.553-559, 2005.
DOI : 10.1002/nbm.991

L. Kostura, D. L. Kraitchman, A. M. Mackay, M. F. Pittenger, and J. W. Bulte, Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis, NMR in Biomedicine, vol.76, issue.7, pp.513-517, 2004.
DOI : 10.1016/S0167-4781(99)00173-6

D. Fayol, N. Luciani, L. Lartigue, F. Gazeau, and C. Wilhelm, Managing Magnetic Nanoparticle Aggregation and Cellular Uptake: a Precondition for Efficient Stem-Cell Differentiation and MRI Tracking, Advanced Healthcare Materials, vol.238, issue.2, pp.313-325, 2013.
DOI : 10.1006/excr.1997.3858

J. Han, Iron Oxide Nanoparticle-Mediated Development of Cellular Gap Junction Crosstalk to Improve Mesenchymal Stem Cells??? Therapeutic Efficacy for Myocardial Infarction, ACS Nano, vol.9, issue.3, pp.2805-2819, 2015.
DOI : 10.1021/nn506732n

K. Cheng, Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting, Nature Communications, vol.5, p.4880, 2014.
DOI : 10.1016/S0140-6736(12)60195-0

K. Au, Effects of iron oxide nanoparticles on cardiac differentiation of embryonic stem cells, Biochemical and Biophysical Research Communications, vol.379, issue.4, pp.898-903, 2009.
DOI : 10.1016/j.bbrc.2008.12.160

H. Parsa, Effect of superparamagnetic iron oxide nanoparticles-labeling on mouse embryonic stem cells, Cell J, vol.17, pp.221-230, 2016.

F. Mazuel, Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, vol.10, issue.8, pp.7627-7638, 2016.
DOI : 10.1021/acsnano.6b02876

URL : https://hal.archives-ouvertes.fr/hal-01518784

F. Mazuel, Magneto-Thermal Metrics Can Mirror the Long-Term Intracellular Fate of Magneto-Plasmonic Nanohybrids and Reveal the Remarkable Shielding Effect of Gold, Advanced Functional Materials, vol.26, issue.9, p.1605997, 2017.
DOI : 10.1021/la102559e

URL : https://hal.archives-ouvertes.fr/hal-01479779

R. Zhao, T. Boudou, W. G. Wang, C. S. Chen, and D. H. Reich, Decoupling Cell and Matrix Mechanics in Engineered Microtissues Using Magnetically Actuated Microcantilevers, Advanced Materials, vol.100, issue.12, pp.1699-1705, 2013.
DOI : 10.1063/1.3634026

URL : https://hal.archives-ouvertes.fr/hal-01545306

X. Trepat, Physical forces during collective cell migration, Nature Physics, vol.282, issue.6, pp.426-430, 2009.
DOI : 10.1007/s00348-001-0396-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.9456

A. F. Frade, Polymorphism in the Alpha Cardiac Muscle Actin 1 Gene Is Associated to Susceptibility to Chronic Inflammatory Cardiomyopathy, PLoS ONE, vol.7, issue.12, p.83446, 2013.
DOI : 10.1371/journal.pone.0083446.s002

URL : https://hal.archives-ouvertes.fr/hal-01592696

Y. K. Chang, Y. P. Liu, J. H. Ho, S. C. Hsu, and O. K. Lee, Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells, Journal of Orthopaedic Research, vol.51, issue.9, pp.1499-1506, 2012.
DOI : 10.1016/j.cyto.2010.06.002

|. Doi, 1038/s41467-017-00543-2 ARTICLE NATURE COMMUNICATIONS | 8: 400 | DOI: 10.1038/s41467-017-00543-2 | www.nature.com/naturecommunications 51. Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells, NATURE COMMUNICATIONS J. Biosci. Bioeng, vol.103, pp.10-389, 2007.

Y. Y. Choi, Controlled-size embryoid body formation in concave microwell arrays, Biomaterials, vol.31, issue.15, pp.4296-4303, 2010.
DOI : 10.1016/j.biomaterials.2010.01.115

J. Park, Microfabrication-based modulation of embryonic stem cell differentiation, Lab on a Chip, vol.83, issue.8, pp.1018-1028, 2007.
DOI : 10.1039/b704739h

K. Nakazawa, Y. Yoshiura, H. Koga, and Y. Sakai, Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes, Journal of Bioscience and Bioengineering, vol.116, issue.5, pp.628-633, 2013.
DOI : 10.1016/j.jbiosc.2013.05.005

M. D. Ungrin, C. Joshi, A. Nica, C. Bauwens, and P. W. Zandstra, Reproducible, Ultra High-Throughput Formation of Multicellular Organization from Single Cell Suspension-Derived Human Embryonic Stem Cell Aggregates, PLoS ONE, vol.31, issue.2, p.1565, 2008.
DOI : 10.1371/journal.pone.0001565.s002

A. P. Van-winkle, I. D. Gates, and M. S. Kallos, Mass Transfer Limitations in Embryoid Bodies during Human Embryonic Stem Cell Differentiation, Cells Tissues Organs, vol.196, issue.1, pp.34-47, 2012.
DOI : 10.1159/000330691

A. A. Blancas, C. Chen, S. Stolberg, and K. E. Mccloskey, Adhesive forces in embryonic stem cell cultures, Cell Adhesion & Migration, vol.109, issue.6, pp.472-479, 2011.
DOI : 10.1002/(SICI)1097-0320(19981001)33:2<179::AIDCYTO12>3.0.CO;2-R

A. R. Harris, Characterizing the mechanics of cultured cell monolayers, Proc. Natl Acad. Sci. USA, pp.16449-16454, 2012.
DOI : 10.1016/j.cub.2009.07.018

M. Xin, A threshold of GATA4 and GATA6 expression is required for cardiovascular development, Proc. Natl Acad. Sci. USA 103, pp.11189-11194, 2006.
DOI : 10.1073/pnas.0507346102

R. Zhao, Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice, Developmental Biology, vol.317, issue.2, pp.614-619, 2008.
DOI : 10.1016/j.ydbio.2008.03.013

S. Stefanovic, Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate, The Journal of Cell Biology, vol.46, issue.5, pp.665-673, 2009.
DOI : 10.1083/jcb.200901040.dv

URL : https://hal.archives-ouvertes.fr/inserm-00409113

T. Zhang, Channelled scaffolds for engineering myocardium with mechanical stimulation, Journal of Tissue Engineering and Regenerative Medicine, vol.90, issue.9, pp.748-756, 2012.
DOI : 10.1002/term.481

I. Banerjee, Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-?? signaling, Journal of Molecular and Cellular Cardiology, vol.79, pp.133-144, 2015.
DOI : 10.1016/j.yjmcc.2014.11.003

Y. Toh and J. Voldman, Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction, The FASEB Journal, vol.25, issue.4, pp.1208-1217, 2011.
DOI : 10.1096/fj.10-168971

J. Pan, Mechanical Stretch Activates the JAK/STAT Pathway in Rat Cardiomyocytes, Circulation Research, vol.84, issue.10, pp.1127-1136, 1999.
DOI : 10.1161/01.RES.84.10.1127

C. Kim, Y. Cho, Y. Chun, J. Park, and M. Kim, Early Expression of Myocardial HIF-1alpha in Response to Mechanical Stresses: Regulation by Stretch-Activated Channels and the Phosphatidylinositol 3-Kinase Signaling Pathway, Circulation Research, vol.90, issue.2, pp.25-33, 2002.
DOI : 10.1161/hh0202.104923

Y. Seko, Pulsatile Stretch Activates Mitogen-Activated Protein Kinase (MAPK) Family Members and Focal Adhesion Kinase (p125FAK) in Cultured Rat Cardiac Myocytes, Biochemical and Biophysical Research Communications, vol.259, issue.1, pp.8-14, 1999.
DOI : 10.1006/bbrc.1999.0720

A. Salameh, Cyclic Mechanical Stretch Induces Cardiomyocyte Orientation and Polarization of the Gap Junction Protein Connexin43, Circulation Research, vol.106, issue.10, pp.1592-1602, 2010.
DOI : 10.1161/CIRCRESAHA.109.214429

L. Petitjean, Velocity Fields in a Collectively Migrating Epithelium, Biophysical Journal, vol.98, issue.9, pp.1790-1800, 2010.
DOI : 10.1016/j.bpj.2010.01.030

S. R. Vedula, Epithelial bridges maintain tissue integrity during collective cell migration, Nature Materials, vol.282, issue.1, pp.87-96, 2014.
DOI : 10.1152/ajpcell.00270.2001

URL : https://hal.archives-ouvertes.fr/hal-00951190