A. Holmgren, Thioredoxin, Annual Review of Biochemistry, vol.54, issue.1, pp.237-271, 1985.
DOI : 10.1146/annurev.bi.54.070185.001321

URL : https://hal.archives-ouvertes.fr/hal-00188911

Y. M. Go, J. D. Chandler, and D. P. Jones, The cysteine proteome, Free Radical Biology and Medicine, vol.84, pp.227-245, 2015.
DOI : 10.1016/j.freeradbiomed.2015.03.022

URL : http://doi.org/10.1016/j.freeradbiomed.2015.03.022

C. E. Paulsen and K. S. Carroll, Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery, Chemical Reviews, vol.113, issue.7, pp.4633-4679, 2013.
DOI : 10.1021/cr300163e

URL : http://doi.org/10.1021/cr300163e

Y. Tagaya, Y. Maeda, and A. Mitsui, ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin ; possible involvement of dithiol-reduction in the IL-2 receptor induction, The EMBO Journal, vol.8, issue.3, pp.757-764, 1989.

E. Mcneill, M. J. Crabtree, and N. Sahgal, Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation, Free Radical Biology and Medicine, vol.79, pp.206-216, 2015.
DOI : 10.1016/j.freeradbiomed.2014.10.575

J. M. Coffin, S. H. Hughes, and H. E. Varmus, The interactions of retroviruses and their hosts, 1997.

K. Teshigawara, M. Maeda, and K. Nishino, Adult T leukemia cells produce a lymphokine that augments interleukin 2 receptor expression, The Journal of Molecular and Cellular Immunology, vol.2, issue.1, pp.17-26, 1985.

N. Wakasugi, Y. Tagaya, and H. Wakasugi, Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2., Proceedings of the National Academy of Sciences, vol.87, issue.21, pp.8282-8286, 1990.
DOI : 10.1073/pnas.87.21.8282

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC54939/pdf

Y. Matsuo and J. Yodoi, Extracellular thioredoxin: A therapeutic tool to combat inflammation, Cytokine & Growth Factor Reviews, vol.24, issue.4, pp.345-353, 2013.
DOI : 10.1016/j.cytogfr.2013.01.001

J. Yodoi and M. Maeda, The discovery of ATL: an odyssey in restrospect, International Journal of Hematology, vol.51, issue.21, pp.423-428, 2011.
DOI : 10.1016/0002-9343(71)90238-5

A. Son, N. Kato, and T. Horibe, Direct Association of Thioredoxin-1 (TRX) with Macrophage Migration Inhibitory Factor (MIF): Regulatory Role of TRX on MIF Internalization and Signaling, Antioxidants & Redox Signaling, vol.11, issue.10, pp.2595-2605, 2009.
DOI : 10.1089/ars.2009.2522

J. Bernhagen, R. Krohn, and H. Lue, MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment, Nature Medicine, vol.96, issue.5, pp.587-596, 2007.
DOI : 10.4049/jimmunol.172.5.2853

L. Leng, C. N. Metz, and Y. Fang, MIF Signal Transduction Initiated by Binding to CD74, The Journal of Experimental Medicine, vol.11, issue.11, pp.1467-1476, 2003.
DOI : 10.1093/emboj/17.23.6812

URL : http://jem.rupress.org/content/jem/197/11/1467.full.pdf

C. C. Nobre, J. M. De-araujo, and T. A. Fernandes, Macrophage Migration Inhibitory Factor (MIF): Biological Activities and Relation with Cancer, Proceedings of the National Academy of Sciences of the United States of America, pp.235-244, 2013.
DOI : 10.1038/jid.2015.259

H. Ouertatani-sakouhi, F. El-turk, and B. Fauvet, Identification and Characterization of Novel Classes of Macrophage Migration Inhibitory Factor (MIF) Inhibitors with Distinct Mechanisms of Action, Journal of Biological Chemistry, vol.15, issue.34, pp.26581-26598, 2010.
DOI : 10.1016/0891-5849(93)90028-S

U. Schwertassek, Y. Balmer, and M. Gutscher, Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1, The EMBO Journal, vol.163, issue.13, pp.3086-3097, 2007.
DOI : 10.4049/jimmunol.165.9.5105

A. Holmgren, Antioxidant Function of Thioredoxin and Glutaredoxin Systems, Antioxidants & Redox Signaling, vol.2, issue.4, pp.811-820, 2000.
DOI : 10.1089/ars.2000.2.4-811

S. Z. Xu, P. Sukumar, and F. Zeng, TRPC channel activation by extracellular thioredoxin, Nature, vol.36, issue.7174, pp.69-72, 2008.
DOI : 10.1113/jphysiol.2004.065391

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645077

R. Sengupta and A. Holmgren, Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase, World Journal of Biological Chemistry, vol.5, issue.1, pp.68-74, 2014.
DOI : 10.4331/wjbc.v5.i1.68

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942543

B. B. Buchanan, A. Holmgren, J. P. Jacquot, and R. Scheibe, Fifty years in the thioredoxin field and a bountiful harvest, BBA) -General Subjects, pp.1822-1829, 2012.
DOI : 10.1016/j.bbagen.2012.07.006

T. C. Laurent, E. C. Moore, and P. Reichard, Enzymatic synthesis of deoxyribonucleotides IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B, The Journal of Biological Chemistry, vol.239, pp.3436-3444, 1964.

A. Holmgren, Thioredoxin. 6. The Amino Acid Sequence of the Protein from Escherichia coli B, European Journal of Biochemistry, vol.7, issue.4, pp.475-484, 1968.
DOI : 10.1515/bchm2.1958.309.1.219

URL : https://hal.archives-ouvertes.fr/hal-00188911

D. P. Jones and Y. M. Go, Redox compartmentalization and cellular stress, Diabetes, Obesity and Metabolism, vol.10, issue.2, pp.116-125, 2010.
DOI : 10.1016/0304-4157(84)90014-5

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1463-1326.2010.01266.x/pdf

P. Wang, Y. Wu, X. Li, X. Ma, and L. Zhong, Thioredoxin and Thioredoxin Reductase Control Tissue Factor Activity by Thiol Redox-dependent Mechanism, Journal of Biological Chemistry, vol.266, issue.5, pp.3346-3358, 2013.
DOI : 10.1046/j.1538-7836.2003.00456.x

URL : http://www.jbc.org/content/288/5/3346.full.pdf

C. A. Lewis, S. J. Parker, and B. P. Fiske, Tracing Compartmentalized NADPH Metabolism in the Cytosol and Mitochondria of Mammalian Cells, Molecular Cell, vol.55, issue.2, pp.253-263, 2014.
DOI : 10.1016/j.molcel.2014.05.008

E. S. Arner and A. Holmgren, Physiological functions of thioredoxin and thioredoxin reductase, European Journal of Biochemistry, vol.263, issue.20, pp.6102-6109, 2000.
DOI : 10.1016/0888-7543(95)80223-9

R. Bertini, O. M. Howard, and H. F. Dong, Thioredoxin, a Redox Enzyme Released in Infection and Inflammation, Is a Unique Chemoattractant for Neutrophils, Monocytes, and T Cells, The Journal of Experimental Medicine, vol.62, issue.11, pp.1783-1789, 1999.
DOI : 10.1172/JCI117450

K. Pekkari, R. Gurunath, E. S. Arner, and A. Holmgren, Truncated Thioredoxin Is a Mitogenic Cytokine for Resting Human Peripheral Blood Mononuclear Cells and Is Present in Human Plasma, Journal of Biological Chemistry, vol.152, issue.48, pp.37474-37480, 2000.
DOI : 10.1016/1040-8428(94)00127-F

K. Fritz-wolf, S. Kehr, M. Stumpf, S. Rahlfs, and K. Becker, Crystal structure of the human thioredoxin reductase???thioredoxin complex, Nature Communications, vol.332, p.383, 2011.
DOI : 10.1002/jcc.20084

F. Chalmel, T. Leveillard, and C. Jaillard, Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential, BMC Molecular Biology, vol.8, issue.1, p.74, 2007.
DOI : 10.1186/1471-2199-8-74

URL : https://hal.archives-ouvertes.fr/hal-00188911

J. D. Buxbaum, S. E. Gandy, and P. Cicchetti, Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation., Proceedings of the National Academy of Sciences, vol.87, issue.15, pp.6003-6006, 1990.
DOI : 10.1073/pnas.87.15.6003

F. Gil-bea, S. Akterin, and T. Persson, Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer's disease brain, EMBO Molecular Medicine, vol.7, issue.10, pp.1097-1111, 2012.
DOI : 10.4161/auto.7.12.18051

K. Pekkari and A. Holmgren, Truncated Thioredoxin: Physiological Functions and Mechanism, Antioxidants & Redox Signaling, vol.6, issue.1, pp.53-61, 2004.
DOI : 10.1089/152308604771978345

D. F. Mahmood, A. Abderrazak, and D. Couchie, Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis, Journal of Cellular Physiology, vol.93, issue.7, pp.1577-1583, 2013.
DOI : 10.1161/01.RES.0000102869.39150.23

URL : https://hal.archives-ouvertes.fr/hal-01544063

B. C. King, J. Nowakowska, C. M. Karsten, J. Kohl, E. Renstrom et al., Truncated and Full-Length Thioredoxin-1 Have Opposing Activating and Inhibitory Properties for Human Complement with Relevance to Endothelial Surfaces, The Journal of Immunology, vol.188, issue.8, pp.4103-4112, 2012.
DOI : 10.4049/jimmunol.1101295

URL : http://www.jimmunol.org/content/jimmunol/188/8/4103.full.pdf

K. Pekkari, J. Avila-carino, R. Gurunath, A. Bengtsson, A. Scheynius et al., Truncated thioredoxin (Trx80) exerts unique mitogenic cytokine effects via a mechanism independent of thiol oxido-reductase activity, FEBS Letters, vol.15, issue.1-3, pp.1-3, 2003.
DOI : 10.1146/annurev.immunol.15.1.297

A. Rubartelli, A. Bajetto, G. Allavena, E. Wollman, and R. Sitia, Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway, The Journal of Biological Chemistry, vol.267, issue.34, pp.24161-24164, 1992.

F. Ng and B. L. Tang, Unconventional Protein Secretion in Animal Cells, Methods in Molecular Biology, vol.101, issue.6, pp.31-46, 2016.
DOI : 10.1073/pnas.0308413101

M. Tanudji, S. Hevi, and S. L. Chuck, The nonclassic secretion of thioredoxin is not sensitive to redox state, AJP: Cell Physiology, vol.284, issue.5, pp.1272-1279, 2003.
DOI : 10.1152/ajpcell.00521.2002

M. Schultze, Zur Anatomie und Physiologie der Retina, Archiv f??r Mikroskopische Anatomie, vol.2, issue.1, pp.175-286, 1866.
DOI : 10.1007/BF02962033

URL : https://babel.hathitrust.org/cgi/imgsrv/download/pdf?id=ien.35558005358730;orient=0;size=100;seq=7;attachment=0

R. Adler and M. Hatlee, Plasticity and differentiation of embryonic retinal cells after terminal mitosis, Science, vol.243, issue.4889, pp.391-393, 1989.
DOI : 10.1126/science.2911751

T. Leveillard, S. Mohand-said, and O. Lorentz, Identification and characterization of rod-derived cone viability factor, Nature Genetics, vol.124, issue.7, pp.755-759, 2004.
DOI : 10.1093/nar/25.17.3389

URL : https://hal.archives-ouvertes.fr/inserm-00312378

T. Cronin, W. Raffelsberger, and I. Lee-rivera, The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress, Cell Death and Differentiation, vol.12, issue.7, pp.1199-1210, 2010.
DOI : 10.1023/A:1001869212639

URL : https://hal.archives-ouvertes.fr/inserm-00465893

G. Elachouri, I. Lee-rivera, and E. Clerin, Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage, Free Radical Biology and Medicine, vol.81, pp.22-29, 2015.
DOI : 10.1016/j.freeradbiomed.2015.01.003

URL : https://hal.archives-ouvertes.fr/hal-01110160

X. Mei, A. Chaffiol, and C. Kole, The Thioredoxin Encoded by the Rod-Derived Cone Viability Factor Gene Protects Cone Photoreceptors Against Oxidative Stress, Antioxidants & Redox Signaling, vol.24, issue.16, pp.909-923, 2016.
DOI : 10.1089/ars.2015.6509

URL : https://hal.archives-ouvertes.fr/hal-01297482

N. Ait-ali, R. Fridlich, and G. Millet, Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis, Cell, vol.161, issue.4, pp.817-832, 2015.
DOI : 10.1016/j.cell.2015.03.023

URL : https://hal.archives-ouvertes.fr/hal-01194945

J. D. Ochrietor, T. P. Moroz, and L. Van-ekeris, Retina-Specific Expression of 5A11/Basigin-2, a Member of the Immunoglobulin Gene Superfamily, Investigative Opthalmology & Visual Science, vol.44, issue.9, pp.4086-4096, 2003.
DOI : 10.1167/iovs.02-0995

D. N. Hebert and A. Carruthers, Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1, The Journal of Biological Chemistry, vol.267, issue.33, pp.23829-23838, 1992.

E. T. Camacho, T. Leveillard, J. A. Sahel, and S. Wirkus, Mathematical Model of the Role of RdCVF in the Coexistence of Rods and Cones in a Healthy Eye, Bulletin of Mathematical Biology, vol.17, issue.7, pp.1394-1409, 2016.
DOI : 10.1038/mt.2009.28

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science, vol.26, issue.1, pp.1029-1033, 2009.
DOI : 10.1038/nrc2536

T. Leveillard, Cancer metabolism of cone photoreceptors, Oncotarget, vol.6, issue.32, pp.32285-32286, 2015.
DOI : 10.18632/oncotarget.5963

H. A. Krebs, The Pasteur effect and the relations between respiration and fermentation, Essays in Biochemistry, vol.8, pp.1-34, 1972.

N. Chauhan, L. Farine, K. Pandey, A. K. Menon, and P. Bütikofer, Lipid topogenesis ??? 35 years on, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1861, issue.8, 2016.
DOI : 10.1016/j.bbalip.2016.02.025

L. C. Byrne, D. Dalkara, and G. Luna, Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration, Journal of Clinical Investigation, vol.125, issue.1, pp.105-116, 2015.
DOI : 10.1172/JCI65654DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382269

T. Leveillard and J. A. Sahel, Metabolic and redox signaling in the retina, Cellular and Molecular Life Sciences, vol.12, issue.1, 2016.
DOI : 10.1371/journal.pgen.1005811

URL : https://hal.archives-ouvertes.fr/hal-01357824

G. L. Fain, R. Hardie, and S. B. Laughlin, Phototransduction and the Evolution of Photoreceptors, Current Biology, vol.20, issue.3, pp.114-124, 2010.
DOI : 10.1016/j.cub.2009.12.006

A. Watts, I. D. Volotovski, and D. Marsh, Rhodopsin-lipid associations in bovine rod outer segment membranes. Identification of immobilized lipid by spin-labels, Biochemistry, vol.18, issue.22, pp.5006-5013, 1979.
DOI : 10.1021/bi00589a031

R. S. Molday and O. L. Moritz, Photoreceptors at a glance, Journal of Cell Science, vol.128, issue.22, pp.4039-4045, 2015.
DOI : 10.1242/jcs.175687

A. M. Geller and P. A. Sieving, Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task, Vision Research, vol.33, issue.11, pp.1509-1524, 1993.
DOI : 10.1016/0042-6989(93)90144-L

T. Leveillard and J. A. Sahel, Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling, Science Translational Medicine, vol.19, issue.2, 2010.
DOI : 10.1093/hmg/ddp484

URL : https://hal.archives-ouvertes.fr/inserm-00472434

J. Krol and B. Roska, Rods Feed Cones to Keep them Alive, Cell, vol.161, issue.4, pp.706-708, 2015.
DOI : 10.1016/j.cell.2015.04.031

URL : http://doi.org/10.1016/j.cell.2015.04.031

A. F. Wright, A searchlight through the fog, Nature Genetics, vol.111, issue.2, pp.132-134, 1997.
DOI : 10.1038/ng0995-27

C. Cepko and C. Punzo, Cell metabolism: Sugar for sight, Nature, vol.26, issue.7557, pp.428-429, 2015.
DOI : 10.1089/hum.2015.030