E. Bardot, D. Calderon, F. Santoriello, S. Han, K. Cheung et al., Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential, Nature Communications, vol.15, p.14428, 2017.
DOI : 10.1186/s13059-014-0550-8

URL : http://www.nature.com/articles/ncomms14428.pdf

R. Benezra, R. Davis, D. Lockshon, D. Turner, and H. Weintraub, The protein Id: A negative regulator of helix-loop-helix DNA binding proteins, Cell, vol.61, issue.1, pp.49-59, 1990.
DOI : 10.1016/0092-8674(90)90214-Y

H. Beppu, M. Kawabata, T. Hamamoto, A. Chytil, O. Minowa et al., BMP Type II Receptor Is Required for Gastrulation and Early Development of Mouse Embryos, Developmental Biology, vol.221, issue.1, pp.249-258, 2000.
DOI : 10.1006/dbio.2000.9670

M. Birket, M. Ribeiro, A. Verkerk, D. Ward, A. Leitoguinho et al., Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells, Nature Biotechnology, vol.128, issue.9, pp.970-979, 2015.
DOI : 10.1016/j.biomaterials.2010.11.044

A. Bondue, G. Lapouge, C. Paulissen, C. Semeraro, M. Iacovino et al., Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification, Cell Stem Cell, vol.3, issue.1, pp.69-84, 2008.
DOI : 10.1016/j.stem.2008.06.009

B. Bruneau, Signaling and Transcriptional Networks in Heart Development and Regeneration, Cold Spring Harbor Perspectives in Biology, vol.5, issue.3, p.8292, 2013.
DOI : 10.1101/cshperspect.a008292

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578359

M. Buckingham, S. Meilhac, and S. Zaffran, Building the mammalian heart from two sources of myocardial cells, Nature Reviews Genetics, vol.272, issue.11, pp.826-835, 2005.
DOI : 10.1016/j.tcm.2004.09.002

URL : https://hal.archives-ouvertes.fr/pasteur-00176847

P. Burridge, E. Matsa, P. Shukla, Z. Lin, J. Churko et al., Chemically defined generation of human cardiomyocytes, Nature Methods, vol.5, issue.8, pp.855-860, 2014.
DOI : 10.1038/nprot.2008.42

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169698

C. Cai, X. Liang, Y. Shi, P. Chu, S. Pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

S. Chan, X. Shi, A. Toyama, R. Arpke, A. Dandapat et al., Mesp1 Patterns Mesoderm into Cardiac, Hematopoietic, or Skeletal Myogenic Progenitors in a Context-Dependent Manner, Cell Stem Cell, vol.12, issue.5, pp.587-601, 2013.
DOI : 10.1016/j.stem.2013.03.004

G. Chiapparo, X. Lin, F. Lescroart, S. Chabab, C. Paulissen et al., Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration, The Journal of Cell Biology, vol.126, issue.4, pp.463-477, 2016.
DOI : 10.1016/j.cell.2007.05.050

A. Colas, J. Cartry, I. Buisson, M. Umbhauer, J. Smith et al., Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus, Developmental Biology, vol.320, issue.2, pp.351-365, 2008.
DOI : 10.1016/j.ydbio.2008.05.547

A. Colas, W. Mckeithan, T. Cunningham, P. Bushway, L. Garmire et al., Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis, Genes & Development, vol.26, issue.23, pp.2567-2579, 2012.
DOI : 10.1101/gad.200758.112

A. Collop, J. Broomfield, R. Chandraratna, Z. Yong, S. Deimling et al., Retinoic acid signaling is essential for formation of the heart tube in Xenopus, Developmental Biology, vol.291, issue.1, pp.96-109, 2006.
DOI : 10.1016/j.ydbio.2005.12.018

I. Costello, I. Pimeisl, S. Drager, E. Bikoff, E. Robertson et al., The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation, Nature Cell Biology, vol.129, issue.9, pp.1084-1091, 2011.
DOI : 10.1186/1471-213X-9-54

R. David, C. Brenner, J. Stieber, F. Schwarz, S. Brunner et al., MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling, Nature Cell Biology, vol.127, issue.3, pp.338-345, 2008.
DOI : 10.1073/pnas.2434235100

A. Djiane, J. Riou, M. Umbhauer, J. Boucaut, and D. Shi, Role of frizzled 7 in the regulation of convergent extension movements during gastrulation in Xenopus laevis, Development, vol.127, pp.3091-3100, 2000.

M. Ema, S. Takahashi, and J. Rossant, Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors, Blood, vol.107, issue.1, pp.111-117, 2006.
DOI : 10.1182/blood-2005-05-1970

A. Foley, O. Korol, A. Timmer, and M. Mercola, Multiple functions of Cerberus cooperate to induce heart downstream of Nodal, Developmental Biology, vol.303, issue.1, pp.57-65, 2007.
DOI : 10.1016/j.ydbio.2006.10.033

D. Fraidenraich, E. Stillwell, E. Romero, D. Wilkes, K. Manova et al., Rescue of Cardiac Defects in Id Knockout Embryos by Injection of Embryonic Stem Cells, Science, vol.306, issue.5694, pp.247-252, 2004.
DOI : 10.1126/science.1102612

P. Gadue, T. Huber, P. Paddison, and G. Keller, Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells, Proceedings of the National Academy of Sciences, vol.115, issue.3, pp.16806-16811, 2006.
DOI : 10.1016/S0092-8674(03)00847-X

K. Galvin, E. Travis, Y. D. Magnuson, T. Vivian, and J. , Nodal Signaling Regulates the Bone Morphogenic Protein Pluripotency Pathway in Mouse Embryonic Stem Cells, Journal of Biological Chemistry, vol.16, issue.26, pp.19747-19756, 2010.
DOI : 10.1016/j.stem.2009.09.012

A. Hollnagel, V. Oehlmann, J. Heymer, U. Ruther, and A. Nordheim, Genes Are Direct Targets of Bone Morphogenetic Protein Induction in Embryonic Stem Cells, Journal of Biological Chemistry, vol.125, issue.28, pp.19838-19845, 1999.
DOI : 10.1016/S0925-4773(97)00656-4

T. Katagiri, M. Imada, T. Yanai, T. Suda, N. Takahashi et al., Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis, Genes to Cells, vol.270, issue.9, pp.949-960, 2002.
DOI : 10.1007/s007740170003

S. Kattman, T. Huber, and G. Keller, Multipotent Flk-1+ Cardiovascular Progenitor Cells??Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages, Developmental Cell, vol.11, issue.5, pp.723-732, 2006.
DOI : 10.1016/j.devcel.2006.10.002

B. Kee, E and ID proteins branch out, Nature Reviews Immunology, vol.442, issue.3, pp.175-184, 2009.
DOI : 10.4049/jimmunol.174.11.7014

Y. Kee and M. Bronner-fraser, To proliferate or to die: role of Id3 in cell cycle progression and survival of neural crest progenitors, Genes & Development, vol.19, issue.6, pp.744-755, 2005.
DOI : 10.1101/gad.1257405

R. Kelly, N. Brown, and M. Buckingham, The Arterial Pole of the Mouse Heart Forms from Fgf10-Expressing Cells in Pharyngeal Mesoderm, Developmental Cell, vol.1, issue.3, pp.435-440, 2001.
DOI : 10.1016/S1534-5807(01)00040-5

R. Kelly, M. Buckingham, and A. Moorman, Heart Fields and Cardiac Morphogenesis, Cold Spring Harbor Perspectives in Medicine, vol.4, issue.10, p.15750, 2014.
DOI : 10.1101/cshperspect.a015750

URL : https://hal.archives-ouvertes.fr/hal-01112651

O. Korchynskyi and P. Ten-dijke, Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter, Journal of Biological Chemistry, vol.16, issue.7, pp.4883-4891, 2002.
DOI : 10.1038/40906

M. Laflamme, K. Chen, A. Naumova, V. Muskheli, J. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.1015-1024, 2007.
DOI : 10.1161/01.RES.86.5.541

F. Lescroart, S. Chabab, X. Lin, S. Rulands, C. Paulissen et al., Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development, Nature Cell Biology, vol.269, issue.9, pp.829-840, 2014.
DOI : 10.1242/dev.087551

X. Lian, J. Zhang, S. Azarin, K. Zhu, L. Hazeltine et al., Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/??-catenin signaling under fully defined conditions, Nature Protocols, vol.119, issue.1, pp.162-175, 2013.
DOI : 10.1038/nprot.2008.143

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612968

T. Lopez-rovira, E. Chalaux, J. Massague, J. Rosa, and F. Ventura, Gene, Journal of Biological Chemistry, vol.125, issue.5, pp.3176-3185, 2002.
DOI : 10.1093/emboj/16.8.2014

D. Lyden, A. Young, D. Zagzag, Y. W. Gerald, W. et al., Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts, Nature, vol.11, issue.6754, pp.670-677, 1999.
DOI : 10.1101/gad.11.7.926

M. Marvin, D. Rocco, G. Gardiner, A. Bush, S. Lassar et al., Inhibition of Wnt activity induces heart formation from posterior mesoderm, Genes & Development, vol.15, issue.3, pp.316-327, 2001.
DOI : 10.1101/gad.855501

W. Mckeithan, A. Colas, P. Bushway, S. Ray, and M. Mercola, ) Progenitor Cells in Mouse Embryonic Stem Cells for Functional Genomics Screening, Curr Protoc Stem Cell Biol, vol.6, pp.1-13, 2012.
DOI : 10.1371/journal.pone.0017771

S. Meilhac, M. Esner, R. Kelly, J. Nicolas, and M. Buckingham, The Clonal Origin of Myocardial Cells in Different Regions of the Embryonic Mouse Heart, Developmental Cell, vol.6, issue.5, pp.685-698, 2004.
DOI : 10.1016/S1534-5807(04)00133-9

URL : https://hal.archives-ouvertes.fr/hal-00311144

S. Meilhac, F. Lescroart, C. Blanpain, and M. Buckingham, Cardiac cell lineages that form the heart, Cold Spring Harb Perspect Med, vol.5, p.26344, 2015.
DOI : 10.1101/cshperspect.a026344

URL : https://hal.archives-ouvertes.fr/pasteur-01572056

P. Menasche, V. Vanneaux, J. Fabreguettes, A. Bel, L. Tosca et al., Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience, European Heart Journal, vol.36, issue.12, pp.743-750, 2015.
DOI : 10.1093/eurheartj/ehu192

URL : https://hal.archives-ouvertes.fr/hal-01545444

M. Mercola, A. Colas, and E. Willems, Induced Pluripotent Stem Cells in Cardiovascular Drug Discovery, Circulation Research, vol.112, issue.3, pp.534-548, 2013.
DOI : 10.1161/CIRCRESAHA.111.250266

E. Miller, J. Lin, E. Frady, P. Steinbach, W. Kristan et al., Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires, Proceedings of the National Academy of Sciences, vol.126, issue.43, pp.2114-2119, 2012.
DOI : 10.1021/ja048241k

URL : http://www.pnas.org/content/109/6/2114.full.pdf

A. Moretti, K. Laugwitz, T. Dorn, D. Sinnecker, and C. Mummery, Pluripotent Stem Cell Models of Human Heart Disease, Cold Spring Harbor Perspectives in Medicine, vol.3, issue.11, p.14027, 2013.
DOI : 10.1101/cshperspect.a014027

P. Nieuwkoop, The ???Organization centre???, Acta Biotheoretica, vol.19, issue.13, pp.178-194, 1967.
DOI : 10.1007/BF01601987

F. Niola, X. Zhao, D. Singh, A. Castano, R. Sullivan et al., Id proteins synchronize stemness and anchorage to the niche of neural stem cells, Nature Cell Biology, vol.19, issue.5, pp.477-487, 2012.
DOI : 10.1038/nprot.2007.296

F. Niola, X. Zhao, D. Singh, R. Sullivan, A. Castano et al., Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis, Journal of Clinical Investigation, vol.123, issue.1, pp.405-417, 2013.
DOI : 10.1172/JCI63811DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151206

E. Olson, Gene Regulatory Networks in the Evolution and Development of the Heart, Science, vol.313, issue.5795, pp.1922-1927, 2006.
DOI : 10.1126/science.1132292

S. Paige, S. Thomas, C. Stoick-cooper, H. Wang, L. Maves et al., A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development, Cell, vol.151, issue.1, pp.221-232, 2012.
DOI : 10.1016/j.cell.2012.08.027

P. Pandur, M. Lasche, L. Eisenberg, and M. Kuhl, Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis, Nature, vol.124, issue.6898, pp.636-641, 2002.
DOI : 10.1016/S0925-4773(00)00394-4

H. Peng, Appendix A: Solutions and Protocols, Methods Cell Biol, vol.36, pp.657-662, 1991.
DOI : 10.1016/S0091-679X(08)60301-5

C. Roschger and C. Cabrele, The Id-protein family in developmental and cancer-associated pathways, Cell Communication and Signaling, vol.266, issue.Suppl 7, p.7, 2017.
DOI : 10.1006/bbrc.1999.1779

Y. Saga, N. Hata, S. Kobayashi, T. Magnuson, M. Seldin et al., MesP1: a novel basic helix?loop?helix protein expressed in the nascent mesodermal cells during mouse gastrulation, Development, vol.122, pp.2769-2778, 1996.

Y. Saga, S. Kitajima, and S. Miyagawa-tomita, Mesp1 Expression Is the Earliest Sign of Cardiovascular Development, Trends in Cardiovascular Medicine, vol.10, issue.8, pp.345-352, 2000.
DOI : 10.1016/S1050-1738(01)00069-X

V. Schneider and M. Mercola, Wnt antagonism initiates cardiogenesis in Xenopus laevis, Genes & Development, vol.15, issue.3, pp.304-315, 2001.
DOI : 10.1101/gad.855601

URL : http://genesdev.cshlp.org/content/15/3/304.full.pdf

T. Schultheiss, J. Burch, and A. Lassar, A role for bone morphogenetic proteins in the induction of cardiac myogenesis., Genes & Development, vol.11, issue.4, pp.451-462, 1997.
DOI : 10.1101/gad.11.4.451

D. Stainier, A glimpse into the molecular entrails of endoderm formation, Genes & Development, vol.16, issue.8, pp.893-907, 2002.
DOI : 10.1101/gad.974902

S. Vincent, N. Dunn, S. Hayashi, D. Norris, and E. Robertson, Cell fate decisions within the mouse organizer are governed by graded Nodal signals, Genes & Development, vol.17, issue.13, pp.1646-1662, 2003.
DOI : 10.1101/gad.1100503

URL : http://genesdev.cshlp.org/content/17/13/1646.full.pdf

M. Viotti, S. Nowotschin, and A. Hadjantonakis, SOX17 links gut endoderm morphogenesis and germ layer segregation, Nature Cell Biology, vol.476, issue.12, pp.1146-1156, 2014.
DOI : 10.1016/S0076-6879(10)76020-1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250291

D. Wilkinson and M. Nieto, [22] Detection of messenger RNA by in Situ hybridization to tissue sections and whole mounts, Methods Enzymol, vol.225, pp.361-373, 1993.
DOI : 10.1016/0076-6879(93)25025-W

A. Wills and J. Baker, E2a Is Necessary for Smad2/3-Dependent Transcription and the Direct Repression of lefty during Gastrulation, Developmental Cell, vol.32, issue.3, pp.345-357, 2015.
DOI : 10.1016/j.devcel.2014.11.034

L. Yang, M. Soonpaa, E. Adler, T. Roepke, S. Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, vol.225, issue.7194, pp.524-528, 2008.
DOI : 10.1161/01.CIR.92.5.1179

J. Yang, X. Li, and N. Morrell, Id proteins in the vasculature: from molecular biology to cardiopulmonary medicine, Cardiovascular Research, vol.104, issue.3, pp.388-398, 2014.
DOI : 10.1093/cvr/cvu215

S. Yoon, A. Wills, E. Chuong, R. Gupta, and J. Baker, HEB and E2A function as SMAD/FOXH1 cofactors, Genes & Development, vol.25, issue.15, pp.1654-1661, 2011.
DOI : 10.1101/gad.16800511

URL : http://genesdev.cshlp.org/content/25/15/1654.full.pdf

T. Yoshida, P. Vivatbutsiri, G. Morriss-kay, Y. Saga, and S. Iseki, Cell lineage in mammalian craniofacial mesenchyme, Mechanisms of Development, vol.125, issue.9-10, pp.797-808, 2008.
DOI : 10.1016/j.mod.2008.06.007

URL : http://doi.org/10.1016/j.mod.2008.06.007

R. Zhao, A. Watt, M. Battle, J. Li, B. Bondow et al., Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice, Developmental Biology, vol.317, issue.2, pp.614-619, 2008.
DOI : 10.1016/j.ydbio.2008.03.013