M. Kirschner, J. Gerhart, T. Mitchison, and . Molecular, Molecular ???Vitalism???, Cell, vol.100, issue.1, pp.79-88, 2000.
DOI : 10.1016/S0092-8674(00)81685-2

URL : http://doi.org/10.1016/s0092-8674(00)81685-2

E. Karsenti, Self-organization in cell biology: a brief history, Nature Reviews Molecular Cell Biology, vol.17, issue.3, pp.255-262, 2008.
DOI : 10.1103/PhysRevE.75.046212

M. C. Good, J. G. Zalatan, and W. A. Lim, Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information, Science, vol.20, issue.6, pp.680-686, 2011.
DOI : 10.1016/j.molcel.2005.10.030

I. Wheeldon, Substrate channelling as an approach to cascade reactions, Nature Chemistry, vol.37, issue.4, pp.299-309, 2016.
DOI : 10.1021/bi9728957

M. Mammen, S. K. Choi, and G. M. Whitesides, Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chemie-International Ed, pp.2755-2794, 1998.

G. M. Whitesides, Self-Assembly at All Scales, Science, vol.295, issue.5564, pp.2418-2421, 2002.
DOI : 10.1126/science.1070821

C. J. Delebecque, A. B. Lindner, P. A. Silver, and F. A. Aldaye, Organization of Intracellular Reactions with Rationally Designed RNA Assemblies, Science, vol.95, issue.8, pp.470-474, 2011.
DOI : 10.1529/biophysj.107.127548

P. C. Jordan, Self-assembling biomolecular catalysts for hydrogen production, Nature Chemistry, vol.259, pp.179-185, 2016.
DOI : 10.1006/jmbi.2000.3620

N. D. Derr, Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold, Science, vol.300, issue.5628, pp.662-665, 2012.
DOI : 10.1126/science.1084398

R. F. Hariadi, Mechanical coordination in motor ensembles revealed using engineered artificial myosin filaments, Nature Nanotechnology, vol.268, issue.8, pp.696-700, 2015.
DOI : 10.1021/bi901756n

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799650

M. Iwaki, A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads, Nature Communications, vol.8, p.13715, 2016.
DOI : 10.1371/journal.pone.0058912

Y. Krishnan and M. Bathe, Designer nucleic acids to probe and program the cell, Trends in Cell Biology, vol.22, issue.12, pp.624-633, 2012.
DOI : 10.1016/j.tcb.2012.10.001

D. Bhatia, Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways, Nature Nanotechnology, vol.111, pp.1112-1119, 2016.
DOI : 10.1091/mbc.6.7.929

M. R. Diehl, K. Zhang, H. J. Lee, and D. A. Tirrell, Engineering Cooperativity in Biomotor-Protein Assemblies, Science, vol.311, issue.5766, pp.1468-1471, 2006.
DOI : 10.1126/science.1122125

URL : http://authors.library.caltech.edu/52025/7/Diehl_SOM.pdf

J. E. Dueber, Synthetic protein scaffolds provide modular control over metabolic flux, Nature Biotechnology, vol.1, issue.8, pp.753-759, 2009.
DOI : 10.1099/00221287-147-12-3241

J. E. Dueber, E. Mirsky, and W. Lim, Engineering synthetic signaling proteins with ultrasensitive input/output control, Nature Biotechnology, vol.95, issue.6, pp.660-662, 2007.
DOI : 10.1038/nbt1308

R. Grunberg and L. Serrano, Strategies for protein synthetic biology, Nucleic Acids Research, vol.38, issue.8, pp.2663-2675, 2010.
DOI : 10.1093/nar/gkq139

A. Colin, L. Bonnemay, C. Gayrard, J. Gautier, and Z. Gueroui, Triggering signaling pathways using F-actin self-organization, Scientific Reports, vol.19, issue.1, p.34657, 2016.
DOI : 10.1016/j.cub.2009.04.027

URL : https://hal.archives-ouvertes.fr/hal-01390588

J. Zhang, X. Li, and X. Li, Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies, Progress in Polymer Science, vol.37, issue.8, pp.1130-1176, 2012.
DOI : 10.1016/j.progpolymsci.2011.11.005

J. Dobson, Remote control of cellular behaviour with magnetic nanoparticles, Nature Nanotechnology, vol.103, issue.3, pp.139-143, 2008.
DOI : 10.1159/000095989

C. Hoffmann, Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles, Nature Nanotechnology, vol.61, issue.3, pp.199-205, 2013.
DOI : 10.1073/pnas.1121583109

URL : https://hal.archives-ouvertes.fr/inserm-00869559

L. Bonnemay, C. Hoffmann, and Z. Gueroui, Remote control of signaling pathways using magnetic nanoparticles, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.9, issue.3, pp.342-354, 2014.
DOI : 10.1038/nmeth.2210

A. P. Liu, Biophysical Tools for Cellular and Subcellular Mechanical Actuation of Cell Signaling, Biophysical Journal, vol.111, issue.6, pp.1112-1118, 2016.
DOI : 10.1016/j.bpj.2016.02.043

F. Etoc, Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells, Nature Nanotechnology, vol.8, issue.3, pp.193-198, 2013.
DOI : 10.1038/nmeth.1233

M. H. Cho, A magnetic switch for the control of cell death signalling in in vitro and in vivo systems, Nature Materials, vol.13, pp.1038-1043, 2012.
DOI : 10.1155/2011/609579

D. Seo, A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time, Cell, vol.165, issue.6, pp.1507-1518, 2016.
DOI : 10.1016/j.cell.2016.04.045

D. Pino and P. , Gene Silencing Mediated by Magnetic Lipospheres Tagged with Small Interfering RNA, Nano Letters, vol.10, issue.10, pp.3914-3921, 2010.
DOI : 10.1021/nl102485v

M. Bornens, Organelle positioning and cell polarity, Nature Reviews Molecular Cell Biology, vol.23, issue.11, pp.874-886, 2008.
DOI : 10.1051/medsci/2007233230

J. Fu, I. M. Hagan, and D. M. Glover, The Centrosome and Its Duplication Cycle, Cold Spring Harbor Perspectives in Biology, vol.7, issue.2, p.15800, 2015.
DOI : 10.1101/cshperspect.a015800

URL : http://cshperspectives.cshlp.org/content/7/2/a015800.full.pdf

P. M. Harrison and P. Arosia, The ferritins: molecular properties, iron storage function and cellular regulation, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1275, issue.3, pp.161-203, 1996.
DOI : 10.1016/0005-2728(96)00022-9

M. A. Kostiainen, O. Kasyutich, J. J. Cornelissen, and R. J. Nolte, Self-assembly and optically triggered disassembly of hierarchical dendron???virus complexes, Nature Chemistry, vol.39, issue.5, pp.394-399, 2010.
DOI : 10.1038/nbt720

M. A. Kostiainen, Electrostatic assembly of binary nanoparticle superlattices using protein cages, Nature Nanotechnology, vol.115, issue.1, pp.52-56, 2013.
DOI : 10.1002/chem.200802334

D. J. Huard, K. M. Kane, and F. A. Tezcan, Re-engineering protein interfaces yields copper-inducible ferritin cage assembly, Nature Chemical Biology, vol.25, issue.3, pp.169-176, 2013.
DOI : 10.1107/S0021889892009944

M. A. Kostiainen, Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism, ACS Nano, vol.5, issue.8, pp.6394-6402, 2011.
DOI : 10.1021/nn201571y

D. Men, Self-Assembly of Ferritin Nanoparticles into an Enzyme Nanocomposite with Tunable Size for Ultrasensitive Immunoassay, ACS Nano, vol.9, issue.11, pp.10852-10860, 2015.
DOI : 10.1021/acsnano.5b03607

G. Bellapadrona and M. Elbaum, Supramolecular protein assemblies in the nucleus of human cells. Angew. Chemie -Int, pp.1534-1537, 2014.

D. P. Cormode, P. A. Jarzyna, W. J. Mulder, and Z. A. Fayad, Modified natural nanoparticles as contrast agents for medical imaging, Advanced Drug Delivery Reviews, vol.62, issue.3, pp.329-338, 2010.
DOI : 10.1016/j.addr.2009.11.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827667

Q. Wang, C. P. Mercogliano, and J. Löwe, A Ferritin-Based Label for Cellular Electron Cryotomography, Structure, vol.19, issue.2, pp.147-154, 2011.
DOI : 10.1016/j.str.2010.12.002

URL : http://doi.org/10.1016/j.str.2010.12.002

K. Fan, Magnetoferritin nanoparticles for targeting and visualizing tumour tissues, Nature Nanotechnology, vol.3, issue.7, pp.459-464, 2012.
DOI : 10.1016/0022-2836(86)90307-4

URL : http://www.nature.com/nnano/journal/v7/n11/pdf/nnano.2012.204.pdf

E. Fantechi, A Smart Platform for Hyperthermia Application in Cancer Treatment: Cobalt-Doped Ferrite Nanoparticles Mineralized in Human Ferritin Cages, ACS Nano, vol.8, issue.5, pp.4705-4719, 2014.
DOI : 10.1021/nn500454n

M. P. Hwang, J. Lee, K. E. Lee, and K. H. Lee, Think Modular: A Simple Apoferritin-Based Platform for the Multifaceted Detection of Pancreatic Cancer, ACS Nano, vol.7, issue.9, pp.8167-8174, 2013.
DOI : 10.1021/nn403465a

V. Velde and G. , Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors, Gene Therapy, vol.275, issue.6, pp.594-605, 2011.
DOI : 10.1074/jbc.M003797200

D. He and J. Marles-wright, Ferritin family proteins and their use in bionanotechnology, New Biotechnology, vol.32, issue.6, pp.651-657, 2015.
DOI : 10.1016/j.nbt.2014.12.006

URL : http://doi.org/10.1016/j.nbt.2014.12.006

S. A. Stanley, Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice, Science, vol.19, issue.3, pp.604-608, 2012.
DOI : 10.1002/adma.200700091

M. A. Wheeler, Genetically targeted magnetic control of the nervous system, Nature Neuroscience, vol.60, issue.5, pp.511-517, 2016.
DOI : 10.1007/s11434-015-0902-0

S. A. Stanley, J. Sauer, R. S. Kane, J. S. Dordick, and J. M. Friedman, Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles, Nature Medicine, vol.5, issue.1, pp.92-98, 2015.
DOI : 10.1006/mcne.2001.1046

R. Derose, T. Miyamoto, and T. Inoue, Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflügers Arch. -Eur, J. Physiol, vol.465, pp.409-417, 2013.

A. Fegan, B. White, J. C. Carlson, and C. R. Wagner, Chemically Controlled Protein Assembly: Techniques and Applications, Chemical Reviews, vol.110, issue.6, pp.3315-3336, 2010.
DOI : 10.1021/cr8002888

B. Ross, S. Mehta, and J. Zhang, Molecular tools for acute spatiotemporal manipulation of signal transduction, Current Opinion in Chemical Biology, vol.34, pp.135-142, 2016.
DOI : 10.1016/j.cbpa.2016.08.012

F. Meldrum, B. Heywood, and S. Mann, Magnetoferritin: in vitro synthesis of a novel magnetic protein, Science, vol.257, issue.5069, pp.522-523, 1992.
DOI : 10.1126/science.1636086

K. K. Wong, T. Douglas, S. Gider, D. D. Awschalom, and S. Mann, Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin), Chemistry of Materials, vol.10, issue.1, pp.279-285, 1998.
DOI : 10.1021/cm970421o

M. Uchida, S. Kang, C. Reichhardt, K. Harlen, and T. Douglas, The ferritin superfamily: Supramolecular templates for materials synthesis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1800, issue.8, pp.834-845, 2010.
DOI : 10.1016/j.bbagen.2009.12.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763752

A. Desai, A. Murray, T. J. Mitchison, and C. Walczak, Chapter 20 The Use of Xenopus Egg Extracts to Study Mitotic Spindle Assembly and Function in Vitro, Methods Cell Biol, vol.61, pp.385-412, 1999.
DOI : 10.1016/S0091-679X(08)61991-3

P. A. Nguyen, Spatial organization of cytokinesis signaling reconstituted in a cell-free system, Science, vol.121, issue.14, pp.244-247, 2014.
DOI : 10.1242/jcs.024018

J. Gaetz, Z. Gueroui, A. Libchaber, and T. M. Kapoor, 11344 | DOI:10.1038/s41598-017-10297-y 55 Examining how the spatial organization of chromatin signals influences metaphase spindle assembly, Scientific REPORtS, pp.924-932, 2006.

C. A. Athale, Regulation of Microtubule Dynamics by Reaction Cascades Around Chromosomes, Science, vol.9, issue.11, pp.1243-1247, 2008.
DOI : 10.1038/ncb1652

L. A. Banaszynski, C. W. Liu, and T. J. Wandless, Characterization of the FKBP??Rapamycin??FRB Ternary Complex, Journal of the American Chemical Society, vol.127, issue.13, pp.4715-4721, 2005.
DOI : 10.1021/ja043277y

T. Wittmann, M. Wilm, E. Karsenti, and I. Vernos, Map Involved in Spindle Pole Organization, The Journal of Cell Biology, vol.61, issue.7, pp.1405-1418, 2000.
DOI : 10.1083/jcb.142.6.1547

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175143/pdf

M. Pinot, Effects of Confinement on the Self-Organization of Microtubules and Motors, Current Biology, vol.19, issue.11, pp.954-960, 2009.
DOI : 10.1016/j.cub.2009.04.027

URL : https://hal.archives-ouvertes.fr/hal-00402473

T. Vignaud, L. Blanchoin, and M. Thery, Directed cytoskeleton self-organization, Trends in Cell Biology, vol.22, issue.12, pp.671-682, 2012.
DOI : 10.1016/j.tcb.2012.08.012

URL : https://hal.archives-ouvertes.fr/hal-00750842

G. Letort, F. Nedelec, L. Blanchoin, and M. Théry, Centrosome centering and decentering by microtubule network rearrangement, Molecular Biology of the Cell, vol.21, issue.24, pp.2833-2843, 2016.
DOI : 10.1091/mbc.E10-07-0627

URL : https://hal.archives-ouvertes.fr/hal-01416192

G. A. Jinhao, G. U. Hongwei, and X. Bing, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications, Acc. Chem. Res, vol.42, pp.1097-1107, 2009.

J. H. Hughes and S. Kumar, Synthetic mechanobiology: engineering cellular force generation and signaling, Current Opinion in Biotechnology, vol.40, pp.82-89, 2016.
DOI : 10.1016/j.copbio.2016.03.004

URL : http://doi.org/10.1016/j.copbio.2016.03.004

D. Fayol, Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling, Advanced Materials, vol.31, issue.18, pp.2611-2616, 2013.
DOI : 10.1016/j.biomaterials.2009.11.014

P. Van-bergeijk, C. C. Hoogenraad, and L. C. Kapitein, Right Time, Right Place: Probing the Functions of Organelle Positioning, Trends in Cell Biology, vol.26, issue.2, pp.121-134, 2016.
DOI : 10.1016/j.tcb.2015.10.001

M. Meister, Author response, eLife, vol.24, issue.290, p.17210, 2016.
DOI : 10.7554/eLife.17210.007

P. Anikeeva and A. Jasanoff, Problems on the back of an envelope, eLife, vol.19, p.19569, 2016.
DOI : 10.1038/nn.4265

E. Hannak and R. Heald, Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts, Nature Protocols, vol.13, issue.5, pp.2305-2314, 2006.
DOI : 10.1016/S0092-8674(00)80991-5

C. A. Schatz, Importin alpha-regulated nucleation of microtubules by TPX2, The EMBO Journal, vol.22, issue.9, pp.2060-2070, 2003.
DOI : 10.1093/emboj/cdg195

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156067

M. Uchida, Targeting of Cancer Cells with Ferrimagnetic Ferritin Cage Nanoparticles, Journal of the American Chemical Society, vol.128, issue.51, pp.16626-16633, 2006.
DOI : 10.1021/ja0655690