N

N

Fast and Parallel AAC Decoder Architecture for a
Digital Radio Mondiale 30 Receiver
Mohammed Shaaban Ibraheem, Khalil Hachicha, Olivier Romain

» To cite this version:

Mohammed Shaaban Ibraheem, Khalil Hachicha, Olivier Romain. Fast and Parallel AAC Decoder
Architecture for a Digital Radio Mondiale 30 Receiver. IEEE Access, 2017, 5, pp.14638 - 14646.
10.1109/ACCESS.2017.2731902 . hal-01596494

HAL Id: hal-01596494
https://hal.sorbonne-universite.fr /hal-01596494
Submitted on 3 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.sorbonne-universite.fr/hal-01596494
https://hal.archives-ouvertes.fr

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 21, 2017, accepted July 19, 2017, date of publication July 25, 2017, date of current version August 14, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2731902

Fast and Parallel AAC Decoder Architecture for a
Digital Radio Mondiale 30 Receiver

MOHAMMED SHAABAN IBRAHEEM', KHALIL HACHICHA'!, AND OLIVIER ROMAIN?
LIP6 Laboratory, University Pierre and Marie CURIE, 75005 Paris, France
2Information Processing and Systems Laboratory, ETIS Laboratory, Cergy-Pontoise University, 95014 Cergy-Pontoise, France

Corresponding author: Khalil Hachicha (khalil.hachicha@upmc.fr)
This work was supported by Agence nationale de la recherche under Grant ARPEGE-SEGI 17.

ABSTRACT An embedded real-time indexing engine for live radio stations requires a high-speed parallel
advanced audio coding (AAC) decoder architecture to decode hundreds of compressed audio streams
broadcast in the digital radio mondiale band. Several AAC hardware core units must be integrated into
a single chip and synchronized with a global controller to achieve such high performance. This paper
proposes a new parallel AAC decoder architecture to address this challenge. The proposed architecture
includes multiple AAC decoder core units, each of which achieves a speed-up by a factor of 2 compared
with the existing AAC decoder core units while using optimal logic resources. The proposed architecture
overcomes several challenges faced by existing architectures. The Huffman decoder module decodes one
word per clock cycle regardless of word length, and a smaller lookup table size is achieved for the inverse
quantization module. The inverse modified discrete cosine transform architecture is fully pipelined, and the
resource sharing technique is used to reduce the logic area. An initial prototype is implemented on an FPGA

platform.

INDEX TERMS DRM, MPEG-4, AAC, FPGA, Huffman decoder, filter banks, IMDCT.

I. INTRODUCTION
Broadcast radio in Digital Audio Broadcasting (DAB and
T-DMB) and Digital Radio Mondiale [1], [2] (DRM30 and
DRM+) are promising radios that contain various data, such
as music, news, sports, weather services, traffic information,
commentary, drama, advertising and an increasing amount of
metadata to help identify and organize content.
Broadcasting information will substantially enrich the
diversity of available content and also open the way to index
the content either via existing metadata tags or using original
features extracted from the radio signals themselves. Just as
it took web browsers to transform the Internet from a simple
computer network into a searchable worldwide database, new
types of navigators capable of searching and organizing the
multimedia streams now available on broadcast radio will be
developed. Unfortunately, the conflicting needs of systems
exploiting these streams have slowed the development of new
products in this emerging market. Today, software-defined
radio techniques based on FPGA devices allow hardware
designers to imagine the power of such media monitoring
systems on a single chip. This advancement opens the door to
a wealth of exciting new consumer electronics applications.

DRM30 is a broadcasting radio system that replaces
the classical analog radio system. DRM30 introduces
high-quality audio combined with rich information about
the broadcasted program. Processing this type of data
requires a new generation of radio receivers. Ideally,
the DRM30 receiver should be able to demodulate more
than 1,000 streams simultaneously to monitor all the broad-
casted programs. Therefore, a new radio receiver architecture
called SurfOnHertz [3] has been proposed. This architec-
ture is an FPGA-based platform designed to implement a
multi-standard multi-tuner (AM, FM, DRM and T-DMB),
capturing and indexing in parallel all channels having the
same frequency band. This architecture will serve as a bridge
between search techniques currently deployed in software,
and the new media standards opportunities. The SurfOnHertz
radio receiver prototype consists of four modules, as shown
in Fig. 1.

The SurfOnHertz radio receiver consists of an antenna,
analog front end, demodulator, and indexing engine. The
analog front end passes the received frequency modula-
tion (FM) signal to an analog-to-digital converter (ADC).
The N streamed digital signals, each of which contains a

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

14638

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

IEEE Access

[!)]
| [}]
GUI

Antenna [Demodulator | [AAC 0] !} E
| (]]
| [}]
Frontend _’E Demodulator E E Search Word E
Analogue [| ' o ! '
] ' .])
DRM band E : : E i Inde).(ing Search results E
'/ Demodulator | | AAC_N i 1| Engine (Screen) E

| .]

FPGA Multi-core PC

FIGURE 1. SurfOnHertz digital radio receiver prototype.

different radio station, are demodulated and uncompressed.
The output is passed to the audio indexing module needed for
speech processing, music type detection and the identification
functions required by the streams’ search engine. The input
search and its results can be accessed via a graphical user
interface (GUI) module.

Broadcasting these streams often creates a transmission
bottleneck, which is why the DRM standard introduced data
compression to transfer large amounts of data with less band-
width. The Moving Picture Experts Group, MPEG, AAC [4]
is the most widely used standard for audio compression. It has
a high audio quality that is suitable for limited-bandwidth
channels and was thus adopted in the DRM standard.

The literature offers several designs of AAC decoders. The
designed architectures can decode only a limited number
of compressed audio streams at the same time. The audio
indexing engine in the SurfOnHertz project requires hundreds
of streams to be decoded in parallel to satisfy the real-time
constraint. This key criterion is mandatory to ensure a highly
interactive graphical interface (GUI). This GUI allows the
end user to look for a specific content extracted from the radio
channels. New challenges emerge when designing a high-
speed AAC decoder architecture for parallel audio stream
decompression. In this work, a new highly optimized system-
level architecture is proposed to address this challenge. The
new design allows for the simultaneous and fast decompres-
sion of the received DRM’s channels. An FPGA solution is
adopted to combine the advantages of design flexibility and
high performance.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III presents an
overview of the AAC decoder algorithm. The proposed
decoder architecture is detailed in Section IV, and the
obtained results and prototype are presented in Section V.
A discussion and concluding remarks are presented in
Section VI.

Il. RELATED WORK

AAC decoders have been implemented and designed using
many approaches in the past decade. Software (SW) decoders
are used most often because of their high flexibility and
short development time [5], [6]. A major development focus
has been to accelerate SW decoders. Reduced instruction

VOLUME 5, 2017

set computing (RISC) microprocessors have been widely
used for this purpose. Takamizawa et al. [7] developed a SW
AAC decoder for an embedded RISC, but it lacks hardware
utilization and non-optimum scheduling. Ryu et al. [8] intro-
duced the digital signal processor (DSP) as an alternative to
the RISC approach. Mesarovic et al. [9] presented an opti-
mized and cost-effective implementation of the decoder on
a dual DSP.

Tsai and Chen [10] used a co-design approach. The bit-
stream parser was performed by software, and the higher-
complexity portion was solved by hardware. With this
approach, over 91.26% of the processor-based loading
was substituted by hardware IP. Tao ez al. [11] introduced
another co-design solution verified on Xilinx XUP FPGA.
The Huffman and inverse modified discrete cosine trans-
form (IMDCT) hardware accelerator modules were devel-
oped to accelerate the decoding process.

The application-specific integrated circuit (ASIC) approach
is considered the best solution in terms of power con-
sumption and area costs. Zhanget al. [12] implemented a
low-power AAC decoder on ASIC, with a power con-
sumption of 20 mW. Another ASIC implementation pre-
sented by Tsai and Liu [13] consumes considerably less
power (2.45 mW). An ASIC MPEG-4 targeting low-power
systems was presented by Liu ef al. [14], and a very-low-
power audio decoder compatible with DAB/DAB+ was pre-
sented by Wang et al., with a power consumption of only
10.4 mW [15].

The FPGA is considered an alternative hardware approach
to ASIC. Although it consumes more power, FPGA-based
platforms are more flexible than ASIC-based platforms.
Renner and Susin [16] presented a full implementation of
an AAC decoder used for Brazilian Digital Television.
The designed architecture is capable of decoding a low-
complexity audio signal in real time with a clock frequency
of 4 MHz. Another FPGA-based implementation was intro-
duced by Sampaio et al. [17]. The design was implemented
on an Altera Cyclone II FPGA with NIOS II/s as a processor
and was able to decode up to six audio channels.

Previously developed designs focused their approaches
mainly on (i) satisfying the real-time constraint while decod-
ing one compressed audio stream and (ii) minimizing the
power consumption by performing an ASIC implementation.
The specifications and needs of the SurfOnHertz project are
different. The embedded audio engine indexes hundreds of
radio stations in parallel, which requires the simultaneous
decoding of incoming audio streams. The following sections
will address this requirement.

Ill. AAC DECODER ALGORITHM OVERVIEW

Fig. 2 shows the AAC decoding system. AAC has many
advantages and is widely used in many applications [18].
It supports up to 84 audio channels and has a wide range
of sampling rates, ranging from 8 kHz to 96 kHz. AAC also
has three different profiles: main, low complexity (LC) and
scalable sample rate (SSR).

14639

IEEE Access

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

— Data Bus
= Main Profile
) SSR Profile

Inverse
Quantization
Rescaling
scale factors

Input
AAC —>
Bitstream

Bitstream
Demux

Intensity/
Coupling

Filterbank

Output
Time signal
(PCM)

Gain Control

FIGURE 2. Schematic of the MPEG-2 AAC decoder.

The audio quality depends on the decoding profile type.
The main profile has the highest audio quality, whereas
the LC profile delivers a primary profile-like audio quality.
The LC profile requires few memory and processing tool
resources, making it a more suitable choice for applications
requiring short decoding times. The AAC decoding sys-
tem [4] consists of a set of tools, as shown in Fig. 2. First,
the bitstream de-multiplexer tool extracts side information
and control signals that are required by the other tools. It also
extracts the coded quantized spectral data that represent the
audio samples.

The Huffman decoder tool applies noiseless decoding to
spectral and scale factor data using 12 Huffman codebooks.
Each codebook contains code words, their lengths, and their
corresponding spectral coefficients.

The inverse quantization tool takes the quantized spec-
tral data and converts the integer values to non-scaled
data, passes them to the rescaling tool and multiplies them
by their relevant scale factor data. The Mid-Side (M/S)
tool and Coupling/Intensity tool are used for stereo audio
streams to improve the coding efficiency. The temporal noise
shape (TNS) tool filters the coding noise. The prediction tool
inserts redundancies, which are removed during the encoding
process.

The filter bank tool converts the scaled inverted spectral
data to the time domain by applying the IMDCT. The time
samples are in pulse coded modulation (PCM) format.

The proposed AAC decoder architecture includes only
the essential required tools to run an LC profile to achieve
a smaller area and shorter decoding time. It also supports
the audio data transport stream (ADTS) format, whereas
decoders in previous work supported the audio data inter-
change format (ADIF). The main difference between the
two formats is that the ADIF stream has only one header,
whereas the ADTS stream consists of multiple frames, each

14640

with its own header, which is a useful way to simplify radio
broadcasting.

IV. PROPOSED DECODER ARCHITECTURE

This section is divided into two parts. First, the proposed
structure of the full AAC decoder, which can process N
streams using only N/2 core units, is presented. Next,
the architecture of the elementary AAC core units is discussed
in detail.

N AAC Parallel Streams Decoder

Demodulator |-}57e2m1 _p[FiIFQ oUT,
Stream 2 B AAC_1 é OouT_2
Demodulator [FIFO] ——>
Demodulator [2¥e2am3 | AAC_2 ouT_3
Stream 4 B —>
Demodulator :—> ouT_4

Demodulator

Demodulator

Stre;am N- OUT_N-1
Stream N =m | H I‘ —W_N/Z }— é
A ouT N

A

h 4

Stcam select | Start
Ready
oUT valid
-

Global Controller ™« >

FIGURE 3. Proposed architecture of the AAC decoder for parallel N
streams.

A. AAC ARCHITECTURE FOR PARALLEL DECOMPRESSION
The global architecture of the proposed parallel decoder is
shown in Fig. 3. It consists of N/2 elementary AAC decoder
units, stream buffers, and a global controller. The controller
is responsible for multiplexing and de-multiplexing incoming
audio streams.

The data flow diagram, shown in Fig. 4, presents a
decoding example of 4 parallel streams. The decoder
starts by buffering the incoming frames for each stream
in a corresponding first-in, first-out (FIFO) scheme.
Assuming that the incoming four streams are Sn =
{S§1, 52, 83,54}, each stream has its frames Sn_fin =
{Sn_f0,Sn_f1,8n_f2,Sn_f3,...}. In that case, only two
decoders are required to process the four streams. Because
of the high-speed of the single AAC core unit, two frames are
processed in a time-multiplexed manner.

B. AAC CORE UNIT ARCHITECTURE

The proposed AAC core unit is divided into four main
modules, as shown in Fig. 5: the data de-multiplexer and
Huffman (DEMUX_HUFF) module, the inverse quantiza-
tion/rescaling (IQ_RESC) module, and the filter bank mod-
ule. The last module is the PCM converter. The finite state
machine (FSM) of the local controller is shown in Fig. 6.

C. DATA DE-MULTIPLEXER AND HUFFMAN MODULE

The DEMUX_HUFF block architecture is shown in Fig. 7.
It receives the input bitstream and parses it to extract the
side information. Then, it decodes the scale factors and

VOLUME 5, 2017

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

IEEE Access

T
Stream 1| S1_f0 S1_f1 S1_f2 s1_f3
Stream 2| S2_f0 s2_f1 s2_f2 s2_f3
Stream 3| S3_f0 S3_f1 S3_f2 S3_f3
Stream 4| S4_f0 sa_f1 sa_f2 sa_f3
FIFO_1] s1_fo s1_f1 s1_f2 s1_f3
FIFO_2| s2_fo s2_f1 s2_f2 s2_f3
FIFO_3 S3_fo S3_f1 S3_f2 S3_f3
FIFO_4| sa_fo sa_f1 sa_f2 sa_f3
AAC_1_0UT S1.f0 | S2_fo | S1.f1 | s2. f1 |s1.f2|S2 f2|s1.3]|s2¢f3
AAC_2_ouT]| S3_f0 | S4_f0 | S3_f1 | S4_f1 | s3_f2 | s4_f2 | s3_f3 | s4_f3

FIGURE 4. Example of how the proposed architecture processes parallel
streams.

Write /=== _ Read
Address Address

Bitstream SD
RAM | 16-bit ,ms'

| pEmux [res\— Q Filter | , | peom | PCMOut

- ——>1
32t | HUFF |s-bit gbit | RESC |s-bi bank | i |Converter 3/Z-bit

Read
Address

Read
‘Address

Start
Busy
Start
Busy
Start
Busy

Write
Address e

ﬁ-(Local Controller

FIGURE 5. AAC Core unit top-level architecture.

Frame Ready

] (to the Global Controller)

Start=0 Demux_Busy = 1

1Q_Busy =1 IMDCT_Busy = 1 WIN_OV_Busy = 1

FIGURE 6. Central controller FSM.

audio spectral data using the Huffman decoder. The decoded
scale factor data are written to the scale factor (SF-RAM),
whereas the decoded audio samples are written to the spectral
data (SD-RAM). The key novelty of this design arises from
the fact that we combine bitstream parsing and the decoding
operations in the same module to save area and optimize the
central controller.

1) BITSTREAM PARSING OPERATION

This operation is a bit-level processing operation using a bar-
rel shifter that reads 64-bit input data from the two registers
(Reg_0 and Reg_1). It shifts its input by a certain number of
bits (shift length) indicating the number of processed bits. The
length is calculated using add and accumulate circuit. The
shift length varies according to the operation type: either pars-
ing or Huffman decoding. The barrel shifter output is passed
to the Demux_Controller and Huffman decoder module.

2) HUFFMAN DECODING OPERATION

Many approaches have been explored to implement the Huff-
man decoder, such as the binary tree method [8], which is
suitable for software implementation, and the lookup table
approach [14]. However, both methods take many clock

VOLUME 5, 2017

(Bitstream data)

[_Input data |
32-bit Huffman
Codeword Parse
I Input_Buffer I length length

P
I Reg_1 I

I Reg_0 I

v

I Barrel Shifter I:

21-bit

\ 4
Huffman
Decoder

L

16-bit| |[8-bit y

Demux_Controller —
To SF RAM

To SD RAM

FIGURE 7. De-multiplexer and Huffman decoder (bitstream parser).

_ ESC
PLA
HCB_select
5-bit

— b LI o
T_.\° ‘ *H’ca_:nzu’; WA\ ‘;ca_‘L;;_ Mzz‘w\ﬁ,:ra_uu;/.__?

16-bit
l J SD_RAM_src_sel

Data_IN

Coeff_sel

3 2.1 0

8-bit

16-bit

5-bit

Huff_Code_len TO SD RAM To SF RAM

FIGURE 8. Huffman decoder architecture.

cycles to decode each code word. An approach based on the
parallel programmable logic array (PLA) is used here. This
approach is efficient for hardware implementation because
of its high throughput property. It takes only one clock cycle
to decode one common code word and takes two clock
cycles to decode the escape (ESC) code words, (ESC_Word)
and (ESC_Prefix) [4].

The proposed architecture of the Huffman decoder module
is shown in Fig. 8. The PLA-like method has been used to
store the 12 Huffman codebooks (HCBs) and the escape code-
book. The barrel shifter contains the Huffman encoded bits.
All inputs of the codebooks’ PLAs are tied to the barrel shifter
output, which makes the search process more efficient and
able to perform in parallel. Each HCB PLA has two outputs,
the decoded word and its length, which is used to calculate the
new shift amount of the barrel shifter. The scale factor data are
decoded using the Huffman codebook (HCB_SF), and then,

14641

IEEE Access

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

Counter1 SWB_offset

Huffman

Sect_Start
Sect_End

Counter1< SWB_offset

Signed CoodBook
W_ &
Get
ESC_Prefix
GetSignBit
Output

X_coeff @
X
GetsSignBit <
Get
ESC_Prefix

GetSignBit
Output

Output
Y_coeff

GetSignBit
Output
Z_coeff

FIGURE 9. Huffman decoder controller FSM.

the spectral data are decoded. Depending on the codebook
dimension, the resulting decoded word is de-grouped into
2-tuple (W and X) or 4-tuple (W, X, Y, and Z) coefficients
according to the standard [4].

The Demux_Controller sends select signals for the MUXs,
write enables and addresses for SD-RAM and SF-RAM. The
Huffman decoder controller FSM is shown in Fig. 9. The state
“Huffman Decode’ indicates that the bitstream is decoded
in one clock cycle due to the PLA approach. This clock
cycle is followed by 2 or 4 clock cycles to de-group the
coefficients into {W, X} or {W, X, Y, Z}, respectively. Finally,
2 or 4 clock cycles are necessary to retrieve the sign bits from
the bitstream.

D. INVERSE QUANTIZATION AND RESCALING MODULE
The inverse quantization function is expressed as

. 4/3
Xinv_qunt = Slg”|Xqunt| /) (D

where X, is the quantized coefficients (spectral data) and
Xinv_qunt 1s the inverse quantized coefficients, which are
rescaled by a gain value as described in (2) to obtain Xyescate,
as illustrated in (3).

gain — 20.25><(sf7100)’ (2)
where sfis the scale factor.
Xrexwle = Xinv_qum X gain. (3)

The IQ_RESC module reads the spectral data and applies
the inverse quantization to them. Then, it rescales the out-
puts using the rescaling factors and writes the result to the
1Q_RAM. The IQ_RESC architecture is shown in Fig. 10. The
operation of this module is divided into two stages:

14642

Rescaling Module

LU Address Calc.
For Interpolation

s) Scale_Factor
Spec_Reg

—0
103284 9|€IS|

Interpolation
Circuit

Shift-Amt

LSL/LSR

ix [FrRe_ReG]

=
e

1 0
1Q_OUT_MUX

32

FIGURE 10. 1Q_RESC module architecture.

1) INVERSE QUANTIZATION STAGE

The algorithm used in FAAD2, an open-source software AAC
decoder, is translated into hardware. There are two probabili-
ties for the IQ operation depending on the spectral coefficient
value. If the value is less than 1,026, the IQ is calculated
using a direct lookup table (LUT); otherwise, the spectral
coefficient is rescaled by a factor of 8. The scaling operation
is a shift to the right by 3 bits to generate the LUT address.
Then, a direct linear interpolation method is applied to the
LUT output.

2) RESCALING STAGE

The output from the previous stage is passed to the rescaling
module, as shown on the right side in Fig. 10. It calculates
the exponential part of the rescaling gain and then multiplies
the IQ data by the gain. The multiplication is performed by
a logical shift right/left (LSL/LSR) operation. The exponent
part of the gain (EXP) register content is shifted by the IQ
data value. If the fraction part of the scale factor is not equal
to zero, it will be multiplied by one of those values {0, 2025
205 2075} "which are pre-calculated and stored in the power
ROM (POW ROM).

E. FILTER BANK MODULE

The filter bank reads the /Q_RESC output data from /Q RAM.
The filter bank has the longest processing time in the decod-
ing chain because it includes the IMDCT block. Therefore,
the modules are fully pipelined to decrease the computation
time.

VOLUME 5, 2017

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

IEEE Access

Coef ROM
512_R
Xr Xi

Coef ROM i i
in |V p
Cr r
Complex_Mul

Coef ROM J:B € d
5121 PP

J

)

——
Coef ROM

64 1 - Data_Out
— -/ "

Win_shape =2

Win_shape /=2

FIGURE 12. IMDCT controller FSM.

1) IMDCT ARCHITECTURE

This architecture is based on the FFT [19]. The IMDCT
module is shown in Fig. 11. It consists of four stages: pre-
IFFT, IFFT, post-IFFT and reordering. Pre-IFFT and post-
IFFT are complex number multiplication operations. The
delay registers (D) in Fig. 11 are introduced to synchronize
the data flow to handle the pipelining timing. The IFFT
block is implemented using a third-party FFT IP core. The
IMDCT Controller FSM is shown in Fig. 12. According to
the standard [2], if the window shape (win_shape) is short,
the first three operations are repeated eight times followed by
a reordering process.

2) PRE-IFFT OPERATION

The controller reads the inputs of the complex multiplier from
the IQ RAM. Then, it latches them into real data and imagi-
nary data registers (Reg_RE, Reg_IM). It performs the mul-
tiplication when the data are valid in those registers. At the
same time, it fetches new data for the next multiplication
operation and feeds the multiplication outputs to the IFFT
module. This process is repeated 512 or 64 times according
to the window sequence (window shape).

3) IFFT OPERATION

The IMDCT controller sends a start signal to the IFFT IP, and
then, it enters a wait state until the IFFT starts to stream out
the output data.

4) POST-IFFT OPERATION

The controller exits from the wait state and starts the Post-
IFFT operation as soon as the IFFT starts streaming out
the data. There is no time wasted buffering the result. The

VOLUME 5, 2017

KBD_1024| |KBD_1024 KBD_128 | | KBD_128
ROM ROM ROM ROM

N e N

REG

ov
RAM

1024%32

FIGURE 13. Windowing and overlapping architecture.

controller writes the Post-IFFT results to the real (Re_RAM)
and imaginary (Im_RAM) RAM.

5) REORDERING OPERATION

The reordering process reads the data from the real and
imaginary RAMs in a specific order according to the IMDCT
algorithm [19].

6) WIN_OV ARCHITECTURE

The windowing operation consists of multiplying the IMDCT
result by constant coefficients. To construct the final filter
bank output, the first half values of the windowed results
are overlapped by adding the first half of the samples of the
current frame to the second half of the samples of the previous
frame. At the same time, the second half of the samples of
the current frame are stored into the overlap (OV RAM) to be
overlapped with the next incoming frame.

The windowing and overlapping operations are pipelined
as shown in Fig. 13. First, the controller fetches the values
(Data_In) from the IMDCT RAM and the coefficients from
one of Kaiser-Bessel derived (KBD) ROM. Then, the con-
troller writes the input and the selected coefficient to the M
and C registers. The contents of both registers are multiplied,
and the result is written to the Z7 and Z2 registers. Next, it is
overlapped with the overlap (OV RAM) contents, which is
latched first to the OV register.

KBD ROM contains the KBD window coefficients [4],
which are selected based on the window shape of the current
and previous frames stored in the registers (Win_C REG)
and (Win_P REG), respectively).

14643

IEEE Access

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

F. PCM CONVERTER MODULE

The PCM converter module is the final stage used to make
the data ready for the audio codec. It is a pure combinational
circuit that converts the filter bank output samples to audio
PCM samples. It compares the output samples coming from
the filter bank and determines whether they are larger than a
16-bit value to cast them in the adequate word length.

SW Decoder HW Decoder
(C++) (VHDL)
Simulation

i A 4

Compare Implementation
Output Results (FPGA)
Physical
Verification

(Logic Analyzer)

FIGURE 14. Design methodology validation process.

V. RESULTS

A. AAC DECODER VALIDATION PROCESS

The design methodology and validation process are shown
in Fig. 14. First, a single AAC core unit was simulated
with EDA tools. The simulation results were compared to
the bitstream decoded by a golden software. Next, a single
AAC core unit was implemented on FPGA and tested by
loading a test ADTS bitstream into ROM. A trigger signal
was generated to start the acquisition of the decoded audio
samples. The samples were stored in a text file saved on
the local memory of a logical analyzer. The text file was
compared to the one generated by the golden software. The
final step of the verification process was to check the full
parallel decoder architecture, including the global controller
and stream buffers. An initial validation was performed by
comparing the decompressed audio streams and the out-
puts of the golden software. Next, an FPGA-based platform
implementation was carried out. In the same manner, a logic
analyzer was used to acquire and store the multiple decoded
streams.

B. SIMULATION RESULTS

The proposed architecture was simulated and compared to the
reference model FAAD?2 output. FAAD?2 is a freeware open-
source software AAC decoder, which has been explored,
analyzed and then adopted to run in a fixed-point format.
Fig. 15 shows a one-frame output from both the VHDL sim-
ulation of an AAC single core unit and the software reference
model. The maximum absolute error is 0.00002, and the root
mean square error (RMSE) is 5.61 x 107°.

14644

4
2 x10 :
—— Software
——=VHDL simulation
15¢
s 1
=
=
£
E 05
< f
5
g 0
8 |
3
@05
-1
15 1 1 1 1 1
0 200 400 600 800 1000

Audio samples [n]

FIGURE 15. Comparison of the software output and VHDL simulation.

The consumed time in clock cycles for each block is shown
in Table 1. These values are calculated for one frame, which
takes 12,620 cycles to be decoded. The filter bank comprises
51.35% of the total computation time.

TABLE 1. Number of operation clock cycles in each block.

Block Clock Cycles
DEMUX_HUFF 1,883
IQ_RESC 4,257
IMDCT 4,416
WIN_OV 2,064
Total 12,620

The filter bank [IMDCT + WIN OV] has the longest execution time.

It is difficult to compare the simulation results with the
related work because the number of implemented modules
in each one is different. Thus, a comparison is performed for
the individual blocks.

The proposed Huffman decoder module requires only
one clock cycle to decode one word, whereas the decoder
of Zhang et al. [12] requires 23-35 clock cycles. Due to
the fully pipelined filter bank in the proposed architecture,
it requires 6,480 clock cycles to process one frame, whereas
the approach of Tsai and Liu [13] needs 15,362 clock cycles.
The proposed design is faster by a factor of two and outper-
forms the implementation of Du ez al. [20] as well.

The proposed architecture of a single AAC core unit
requires only 12,620 clock cycles to perform full decoding,
whereas the Tsai and Liu design [13] requires 30,081 clock
cycles.

C. FPGA IMPLEMENTATION RESULTS

The single AAC core unit was tested by loading a test ADTS
bitstream into ROM and has been successfully decoded.
Physical verification has been performed by measuring the

VOLUME 5, 2017

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

IEEE Access

output signals from the FPGA using the logic analyzer. The
captured signals correspond well with the simulation results.
The full design of an AAC core unit is compared to previous
similar work in Table 2. It decodes one frame faster com-
pared to the best related work and thus improves the decoding
speed by a factor of two.

The resource utilization for each block is listed in Table 3.
The targeted device is an Altera Stratix V GS designed with a
28 nm process technology. The majority of the DSP elements
are dedicated to the FFT in the filter bank. The FFT also
occupies the largest area and RAM space. The proposed
decoder requires 50.125 kb of memory bits, which is more
than that required by the approach of Tsai and Liu [13]. This
larger space requirement is due to the additional RAM needed
in the filter bank to achieve pipelining. Finally, we notice that
the power consumption is 98.82 mW at 0.85V core voltage.

TABLE 2. Comparison of proposed architecture with recent work.

THIS
[19] [14] [13] [16] ARTICLE

Profile LC LC LC LC LC
Approach DSP ASIC ASIC FPGA FPGA
Frequency (MHz) 44 5 1.3 4 50.54
Clock Cycles (K) 997 90 32 N/A 13
Memory Bits (kb) N/A 17.7 27.75 30.36 50.125
Power (mW) N/A N/A 2.45 N/A 98.82

Compared to other designs presented in recent work,
the proposed design has the shortest computation time in
terms of required clock cycles, as shown in Table 2.

TABLE 3. Resource utilization of each entity for a single AAC core.

Module EII; ::lg:l is Memory (bits) DSP Blocks
DEMUX_HUFF 2102 2560 0
IQ RESC 868 0 4
IMDCT 5,454 134904 60
WIN_OV 510 159744 2
PCM Converter 50 0 0
Main Controller 8 0 0
SF_RAM 0 512 0
SD_RAM 0 16384 0
IMDCT _RAM 0 63488 0
1Q_ RAM 0 32768 0

The majority of the block memory bits are dedicated to the
IMDCT to achieve the pipelining. The KBD ROMs inside the
WIN_OV are synthesized as memory blocks to reduce the
logic area.

The majority of the block memory bits are dedicated to the
IMDCT to achieve the pipelining. The KBD ROMs inside
the WIN_OV are synthesized as memory blocks to reduce
the logic area.

VOLUME 5, 2017

Generator

FIGURE 16. SurfOnHertz prototype.

TABLE 4. Resource utilization of the full parallel AAC decoder.

Logic Elements

DSP Blocks

Block Memory bits
Maximum frequency

153,675 /262,400 (59%)
1,650/ 1,963 (84%)
10,273,850 / 52,572,160 (20%)
50.54 MHz
The results above are for N=25 AAC core units to process 50 parallel
streams.

D. PARALLEL DECODER PROTOTYPE FOR THE
SurfOnHertz RECEIVER

Fig. 16 shows the experimental setup of the designed DRM
receiver. The prototype receives (0 — 30) MHz DRM band
signals from the signal generator via the front-end module
and passes them to the channelizer. The outputs of the demod-
ulators are decompressed using the proposed architecture.
Next, the audio streams are indexed on the PC feeding a
GUI, which allows users to search for the desired content
extracted from the radio channels. In this first prototype,
no extra cooling is added to the FPGA chip. However, it’s
advisable to install a heat sink on the final product since we
use extensive physical resources of the FPGA.

Table 4 shows the resource utilization results of the pro-
posed decoder implemented on an Altera Stratix V GS FPGA
platform. We used various settings in the Quartus software to
optimize resources utilization. The purpose is to be able to put
as much AAC core units as possible. The decoder contains
25 AAC core units, which can decompress 50 parallel audio
streams. The proposed decoder is scalable to a higher number
of parallel streams. The full proposed decoder consumes 84%
of the DSP blocks and 59% of the logic area due to the
computation-intensive IFFT modules inside the filter bank.
It requires a small amount of memory (20% of the available
block memory). DSP blocks are considered the bottleneck to
integrate more AAC decoder core units. The new FPGA plat-
form generations contain more logic resources, more on-chip
memory and more DSP blocks, thus meeting the scalability
requirements to decode more audio streams.

14645

IEEE Access

M. S. Ibraheem et al.: Fast and Parallel AAC Decoder Architecture for a DRM30 Receiver

VI. CONCLUSION

This article presented a full-fixed-point AAC decoder archi-
tecture that allows for the rapid decompression of parallel
audio streams and thus enables the indexing of DRM radio
channels in real time. The global architecture consists of
multi-AAC decoder core units, stream buffers, and a global
controller. The core unit architecture includes the required
tools to decode an ADTC bitstream with LC profile. It also
supports a variety of sampling rate frequencies and operates
in real time.

Speed and area factors are considered in the design of the
AAC core unit. An approach based on a PLA-like method
has been implemented, making the search process for code-
books possible in parallel. The IMDCT architecture is fully
pipelined and operates for two types of window size: short
and long. The proposed AAC decoder core unit can decode
two frames faster than the best related work presented in the
literature. Therefore, it enables a reduction in the number
of required core units to decode N parallel streams by half
and paves the way for the decoding of hundreds of com-
pressed streams on a single chip. An initial prototype has been
implemented on an Altera Stratix V GS FPGA platform. This
prototype supports decompressing 50 parallel audio streams
with an operating frequency of up to 50.54 MHz.

REFERENCES

[1] F. Hofmann, C. Hansen, and W. Schafer, “Digital radio mondiale (DRM)
digital sound broadcasting in the AM bands,” IEEE Trans. Broadcast.,
vol. 49, no. 3, pp. 319-328, Sep. 2003.

[2] ETSI, Digital Radio Mondiale (DRM); System Specification, ETSI Stan-
dard ETSI ES 201 980 and V3.1.1, 2009-08. 8, 2009.

[3] B. H. Tietche, O. Romain, and B. Denby, “Sparse channelizer for FPGA-
based simultaneous multichannel DRM30 receiver,” IEEE Trans. Consum.
Electron., vol. 61, no. 2, pp. 151-159, May 2015.

[4]1 Information Technology—Generic Coding of Moving Pictures and Asso-
ciated Audio Information, Part 7: Advanced Audio Coding, document
ISO/IEC 13818-7, 2004.

[5] V.Q. Do, N. Binh, S.-T. Chung, and S. Cho, “Design and implementation
of an embedded multimedia live streaming decoder system,” in Proc.
Int. Conf. Adv. Technol. Commun. (ATC), Hanoi, Vietnam, Oct. 2014,
pp. 377-382, doi: 10.1109/ATC.2014.7043415.

[6] S. V. Pande and P. D. Bhirange, “Simulink based low power MPEG-4
AAC Audio encoder and decoder,” in Proc. Int. Conf. Commun. Sig-
nal Process. (ICCSP), Melmaruvathur, India, Apr. 2015, pp. 0418-0424,
doi: 10.1109/ICCSP.2015.7322922.

[7]1 Y. Takamizawa, K. Nadehara, M. Boegli, M. Ikekawa, and I. Kuroda,
“MPEG-2 AAC 5.1-channel decoder software for a low-power embedded
RISC microprocessor,” J. VLSI Signal Process.-Syst. Signal, Image, Video
Technol., vol. 29, no. 3, pp. 247-254, Nov. 2001.

[8] C. W. Ryu, D. H. Lee, H. J. Chi, K. S. Kwan, T. H. Kim, and J. S. Park,
“Design of digital audio DSP core,” in Proc. Ist Int. Forum Strategic
Technol., Ulsan, South Korea, Oct. 2006, pp. 59-62.

[9] V. Mesarovic, N. D. Hemkumr, and M. Dokic, “MPEG-4 AAC audio
decoding on a 24-bit fixed-point dual-DSP architecture,” in Proc. IEEE
Int. Symp. Circuits Syst., vol. 3. Geneva, Switzerland, May 2000,
pp. 706-709.

[10] T.-H. Tsai and D.-M. Chen, “A hardware/software co-design of high
efficiency AAC audio decoder,” J. Signal Process. Syst., vol. 88, no. 3,
pp. 345-356, 2017.

[11] Z.Tao,G.Buning, Q. Haojun, and Y. Fengping, “MP3/AAC audio decoder
implementation based on hardware and software co-design,” in Proc.
3rd Int. Congr. Image Signal Process., vol. 8. Yantai, China, Oct. 2010,
pp. 3695-3698.

14646

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

H. Zhang, M. Lu, and G. Wang, “An ASIC implementation of MPEG
audio decoders,” in Proc. 7th Int. Conf. ASIC, Guilin, China, Oct. 2007,
pp. 754-757.

T. H. Tsai and C. N. Liu, “Low-power system design for MPEG-2/4 AAC
audio decoder using pure ASIC approach,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 56, no. 1, pp. 144-155, Jan. 2009.

P. Liu et al, “VLSI implementation for portable application ori-
ented MPEG-4 audio codec,” in Proc. IEEE Int. Symp. Circuits Syst.,
New Orleans, LA, USA, May 2007, pp. 777-780.

G. Wang, H. Zhang, M. Lu, C. Zhang, T. Jiang, and G. Guo,
“Low-cost low-power ASIC solution for both DAB+ and DAB audio
decoding,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,vol. 22,no. 4,
pp. 913-921, Apr. 2014.

A. Renner and A. A. Susin, “An MPEG-4 AAC decoder FPGA imple-
mentation for the Brazilian digital television,” in Proc. Southern Conf.
Program. Logic, Bento Goncalves, Brazil, Mar. 2012, pp. 1-6.

R. C. Sampaio, P. de Azevedo Berger, and R. P. Jacobi, “Hardware
and software co-design for the AAC audio decoder,” in Proc. 25th
Symp. Integr. Circuits Syst. Design (SBCCI), Brasilia, 2012, pp. 1-6,
doi: 10.1109/SBCCI.2012.6344447.

M. A. Watson and P. Buettner, “Design and implementation of AAC
decoders,” IEEE Trans. Consum. Electron., vol. 46, no. 3, pp. 819-824,
Aug. 2000.

P. Duhamel, Y. Mahieux, and J. P. Petit, “A fast algorithm for the imple-
mentation of filter banks based on ’time domain aliasing cancellation,”
in Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 3. Toronto, ON,
Canada, pp. 2209-2212, Apr. 1991.

F. Du, Y. Song, D. Zhang, and M. Gao, “An implementation of filterbank
for MPEG-2 AAC on FPGA,” in Proc. 2nd Int. Conf. Anti-Counterfeiting,
Security Identificat., Guiyang, China, Aug. 2008, pp. 391-394.

MOHAMMED SHAABAN IBRAHEEM received
the B.S. degree in computers and systems engi-
neering from Minia University, Egypt, the M.S.
degree in electronic design from Lund University,
Sweden, and the Ph.D. degree from the UPMC
Sorbonne University, Paris, France. His research
interests include hardware architectures for signal
processing algorithms.

KHALIL HACHICHA received the M.S. and
Ph.D. degrees in electronics engineering from
UPMC Sorbonne University in 2001 and 2005,
respectively. He is currently an Associate Profes-
sor with UPMC Sorbonne University. His current
research involves audio and video compression
algorithms, embedded system design, and the
power consumption of connected devices.

OLIVIER ROMAIN received the Engineering
degree from ENS Cachan, the M.S. degree from
Louis Pasteur University, and the Ph.D. degree
from UPMC Sorbonne University, Paris, all in
electronics. Since 2012, he has been the Head of
the Architecture Department, ETIS Laboratory. He
is currently a Full Professor of electrical engi-
neering with Cergy-Pontoise University, France.
His research interests include system-on-chip for
broadcast and biomedical applications.

VOLUME 5, 2017

