Y. Gruenbaum and U. Aebi, Intermediate filaments: a dynamic network that controls cell mechanics, F1000Prime Reports, vol.6, issue.54, pp.6-54, 2014.
DOI : 10.12703/P6-54

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108948

S. Kim and P. A. Coulombe, Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm, Genes & Development, vol.21, issue.13, pp.1581-15971552107, 2007.
DOI : 10.1101/gad.1552107

N. T. Snider and M. B. Omary, Post-translational modifications of intermediate filament proteins: mechanisms and functions, Nature Reviews Molecular Cell Biology, vol.15, issue.3, pp.163-177, 2014.
DOI : 10.1016/j.tcb.2005.09.004

D. L. Winter, D. Paulin, M. Mericskay, and Z. Li, Posttranslational modifications of desmin and their implication in biological processes and pathologies, Histochemistry and Cell Biology, vol.334, issue.2, pp.1-16, 2014.
DOI : 10.1006/abbi.1996.0449

URL : https://hal.archives-ouvertes.fr/hal-01545739

M. Gregor, Mechanosensing through focal adhesion-anchored intermediate filaments, The FASEB Journal, vol.28, issue.2, pp.715-72913, 2014.
DOI : 10.1096/fj.13-231829

URL : http://www.fasebj.org/content/28/2/715.full.pdf

R. E. Leube, M. Moch, and R. Windoffer, Intermediate filaments and the regulation of focal adhesion, Current Opinion in Cell Biology, vol.32, pp.13-20, 2015.
DOI : 10.1016/j.ceb.2014.09.011

A. J. Maniotis, C. S. Chen, and D. E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proceedings of the National Academy of Sciences, vol.307, issue.1, pp.849-854, 1997.
DOI : 10.1038/307363a0

B. Johansson, A. Eriksson, I. Virtanen, and L. E. Thornell, Intermediate filament proteins in adult human arteries, The Anatomical Record, vol.215, issue.4, pp.439-448, 1997.
DOI : 10.1161/01.CIR.85.1.391

O. K. Wede, M. Lofgren, Z. Li, D. Paulin, and A. Arner, Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice, The Journal of Physiology, vol.15, issue.3, pp.941-949, 2002.
DOI : 10.1007/BF00123477

A. Izmiryan, C. A. Franco, D. Paulin, Z. Li, and Z. Xue, Synemin isoforms during mouse development: Multiplicity of partners in vascular and neuronal systems, Experimental Cell Research, vol.315, issue.5, pp.769-783, 2009.
DOI : 10.1016/j.yexcr.2008.12.009

J. V. Small and M. Gimona, The cytoskeleton of the vertebrate smooth muscle cell, Acta Physiologica Scandinavica, vol.141, issue.4, pp.341-348, 1998.
DOI : 10.1083/jcb.141.2.539

N. Sun, D. R. Critchley, D. Paulin, Z. Li, and R. M. Robson, Human ??-synemin interacts directly with vinculin and metavinculin, Biochemical Journal, vol.409, issue.3, pp.657-667, 2008.
DOI : 10.1042/BJ20071188

N. Sun, D. R. Critchley, D. Paulin, Z. Li, and R. M. Robson, Identification of a repeated domain within mammalian ??-synemin that interacts directly with talin, Experimental Cell Research, vol.314, issue.8, pp.1839-1849034, 2008.
DOI : 10.1016/j.yexcr.2008.01.034

N. Sun, T. W. Huiatt, D. Paulin, Z. Li, and R. M. Robson, Synemin interacts with the LIM domain protein zyxin and is essential for cell adhesion and migration, Experimental Cell Research, vol.316, issue.3, pp.491-505015, 2010.
DOI : 10.1016/j.yexcr.2009.10.015

N. Uyama, Hepatic stellate cells express synemin, a protein bridging intermediate filaments to focal adhesions, Gut, vol.55, issue.9, pp.1276-1289078865, 2005.
DOI : 10.1136/gut.2005.078865

R. Bhattacharya, Recruitment of vimentin to the cell surface by ??3 integrin and plectin mediates adhesion strength, Journal of Cell Science, vol.122, issue.9, pp.1390-1400043042, 2009.
DOI : 10.1242/jcs.043042

O. Esue, A. A. Carson, Y. Tseng, and D. Wirtz, A Direct Interaction between Actin and Vimentin Filaments Mediated by the Tail Domain of Vimentin, Journal of Biological Chemistry, vol.9, issue.41, pp.30393-30399, 2006.
DOI : 10.1083/jcb.89.2.198

S. Kreis, H. J. Schonfeld, C. Melchior, B. Steiner, and N. Kieffer, The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/beta1 cytoplasmic tail complex and co-localizes with native alpha2/beta1 in endothelial cell focal adhesions, Exp Cell Res, vol.30512, pp.110-121023, 2004.

D. Tsuruta and J. C. Jones, The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress, Journal of Cell Science, vol.116, issue.24, pp.4977-498400823, 2003.
DOI : 10.1242/jcs.00823

M. Gonzales, Structure and Function of a Vimentin-associated Matrix Adhesion in Endothelial Cells, Molecular Biology of the Cell, vol.12, issue.1, pp.85-100, 2001.
DOI : 10.1091/mbc.12.1.85

J. Ivaska, H. M. Pallari, J. Nevo, and J. Eriksson, Novel functions of vimentin in cell adhesion, migration, and signaling, Experimental Cell Research, vol.313, issue.10, pp.2050-2062, 2007.
DOI : 10.1016/j.yexcr.2007.03.040

J. D. Humphrey, D. G. Harrison, C. A. Figueroa, P. Lacolley, and S. Laurent, Central Artery Stiffness in Hypertension and Aging, Circulation Research, vol.118, issue.3, pp.379-381307722, 2016.
DOI : 10.1161/CIRCRESAHA.115.307722

URL : http://circres.ahajournals.org/content/circresaha/118/3/379.full.pdf

P. Lacolley, Increased Carotid Wall Elastic Modulus and Fibronectin in Aldosterone-Salt-Treated Rats: Effects of Eplerenone, Circulation, vol.106, issue.22, pp.2848-2853, 2002.
DOI : 10.1161/01.CIR.0000039328.33137.6C

Y. Zhu, Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging, Aging Cell, vol.66, issue.Pt 3, pp.741-750, 2012.
DOI : 10.1007/s00018-009-0092-5

H. Qiu, Short Communication: Vascular Smooth Muscle Cell Stiffness As a Mechanism for Increased Aortic Stiffness With Aging, Circulation Research, vol.107, issue.5, pp.615-619, 2010.
DOI : 10.1161/CIRCRESAHA.110.221846

N. L. Sehgel, Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension, AJP: Heart and Circulatory Physiology, vol.305, issue.9, pp.1281-1287, 2013.
DOI : 10.1152/ajpheart.00232.2013

N. L. Sehgel, S. F. Vatner, and G. A. Meininger, ???Smooth Muscle Cell Stiffness Syndrome??????Revisiting the Structural Basis of Arterial Stiffness, Frontiers in Physiology, vol.11, issue.6, p.335, 2015.
DOI : 10.1111/j.1474-9726.2012.00840.x

R. Scientific, P. Lacolley, Z. Li, P. Challande, and V. Regnault, DOI:10.1038/s41598-017-12024-z 28 SRF/myocardin: a novel molecular axis regulating vascular smooth muscle cell stiffening in hypertension, Cardiovasc Res, vol.7, issue.113, pp.120-122, 2017.

N. Zhou, Inhibition of SRF/myocardin reduces aortic stiffness by targeting vascular smooth muscle cell stiffening in hypertension, Cardiovascular Research, vol.113, issue.2, pp.171-182, 2017.
DOI : 10.1093/cvr/cvw222

G. Galmiche, Inactivation of Serum Response Factor Contributes To Decrease Vascular Muscular Tone and Arterial Stiffness in Mice, Circulation Research, vol.112, issue.7, pp.1035-1045, 2013.
DOI : 10.1161/CIRCRESAHA.113.301076

URL : https://hal.archives-ouvertes.fr/hal-01460172

S. Laurent and P. Boutouyrie, The Structural Factor of Hypertension: Large and Small Artery Alterations, Circulation Research, vol.116, issue.6, pp.1007-1021303596, 2015.
DOI : 10.1161/CIRCRESAHA.116.303596

R. P. Brandes, I. Fleming, and R. Busse, Endothelial aging, Cardiovascular Research, vol.66, issue.2, pp.286-294027, 2004.
DOI : 10.1016/j.cardiores.2004.12.027

P. Lacolley, Mechanical properties and structure of carotid arteries in mice lacking desmin, Cardiovascular Research, vol.51, issue.1, pp.178-187, 2001.
DOI : 10.1016/S0008-6363(01)00278-4

E. Terriac, Vimentin Levels and Serine 71 Phosphorylation in the Control of Cell-Matrix Adhesions, Migration Speed, and Shape of Transformed Human Fibroblasts. Cells 6, doi:https://doi.org/10, p.6010002, 2017.

B. Eckes, Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts, J Cell Sci, vol.111, pp.1897-1907, 1998.

M. G. Mendez, D. Restle, and P. A. Janmey, Vimentin Enhances Cell Elastic Behavior and Protects against Compressive Stress, Biophysical Journal, vol.107, issue.2, pp.314-323, 2014.
DOI : 10.1016/j.bpj.2014.04.050

URL : http://doi.org/10.1016/j.bpj.2014.04.050

B. Trachet, Performance Comparison of Ultrasound-Based Methods to Assess Aortic Diameter and Stiffness in Normal and Aneurysmal Mice, PLOS ONE, vol.12, issue.5, 2015.
DOI : 10.1371/journal.pone.0129007.t001

Y. Bezie, Fibronectin Expression and Aortic Wall Elastic Modulus in Spontaneously Hypertensive Rats, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.18, issue.7, pp.1027-1034, 1998.
DOI : 10.1161/01.ATV.18.7.1027

URL : http://atvb.ahajournals.org/content/atvbaha/18/7/1027.full.pdf

Z. G. Xue, The mouse synemin gene encodes three intermediate filament proteins generated by alternative exon usage and different open reading frames, Experimental Cell Research, vol.298, issue.2, pp.431-444, 2004.
DOI : 10.1016/j.yexcr.2004.04.023

Z. Li, Synemin acts as a regulator of signalling molecules during skeletal muscle hypertrophy, Journal of Cell Science, vol.127, issue.21, pp.4589-4601143164, 2014.
DOI : 10.1242/jcs.143164

URL : https://hal.archives-ouvertes.fr/hal-01545450

M. J. Brown, J. A. Hallam, E. Colucci-guyon, and S. Shaw, Rigidity of Circulating Lymphocytes Is Primarily Conferred by Vimentin Intermediate Filaments, The Journal of Immunology, vol.166, issue.11, pp.6640-6646, 2001.
DOI : 10.4049/jimmunol.166.11.6640

Y. B. Lu, Reactive glial cells: increased stiffness correlates with increased intermediate filament expression, The FASEB Journal, vol.25, issue.2, pp.624-63110, 2011.
DOI : 10.1096/fj.10-163790

N. Wang and D. Stamenovic, Contribution of intermediate filaments to cell stiffness, stiffening, and growth, Am J Physiol Cell Physiol, vol.279, pp.188-194, 2000.

G. Ofek, D. C. Wiltz, and K. A. Athanasiou, Contribution of the Cytoskeleton to the Compressive Properties and Recovery Behavior of Single Cells, Biophysical Journal, vol.97, issue.7, pp.1873-1882, 2009.
DOI : 10.1016/j.bpj.2009.07.050

P. Lacolley, P. Challande, M. Osborne-pellegrin, and V. Regnault, Genetics and pathophysiology of arterial stiffness, Cardiovascular Research, vol.81, issue.4, pp.637-648, 2009.
DOI : 10.1093/cvr/cvn353

J. Candiello, Biomechanical properties of native basement membranes, FEBS Journal, vol.201, issue.11, pp.2897-2908, 2007.
DOI : 10.1113/jphysiol.1969.sp008739

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2007.05823.x/pdf

J. Candiello, G. J. Cole, and W. Halfter, Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane, Matrix Biology, vol.29, issue.5, pp.402-410, 2010.
DOI : 10.1016/j.matbio.2010.03.004

W. Halfter, The Bi-Functional Organization of Human Basement Membranes, PLoS ONE, vol.266, issue.7, p.67660, 2013.
DOI : 10.1371/journal.pone.0067660.s006

P. B. Henrich, Nanoscale Topographic and Biomechanical Studies of the Human Internal Limiting Membrane, Investigative Opthalmology & Visual Science, vol.53, issue.6, pp.2561-257011, 2012.
DOI : 10.1167/iovs.11-8502

W. Halfter, New concepts in basement membrane biology, FEBS Journal, vol.13, issue.23, pp.4466-447913495, 2015.
DOI : 10.1038/ncb2233

X. Yang, Basement membrane stiffening promotes retinal endothelial activation associated with diabetes, The FASEB Journal, vol.30, issue.2, pp.601-61115, 2016.
DOI : 10.1096/fj.15-277962

URL : http://www.fasebj.org/content/30/2/601.full.pdf

P. Boutouyrie, In Vivo/In Vitro Comparison of Rat Abdominal Aorta Wall Viscosity : Influence of Endothelial Function, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.7, pp.1346-1355, 1997.
DOI : 10.1161/01.ATV.17.7.1346

T. M. Svitkina, A. B. Verkhovsky, and G. G. Borisy, Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton, The Journal of Cell Biology, vol.135, issue.4, pp.991-1007, 1996.
DOI : 10.1083/jcb.135.4.991

Y. Jiu, Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA, Journal of Cell Science, vol.130, issue.5, pp.892-902196881, 2017.
DOI : 10.1242/jcs.196881

URL : http://doi.org/10.1242/jcs.196881

A. P. Kowalczyk, VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: a pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions, J Cell Sci, vol.111, pp.3045-3057, 1998.

R. J. Saphirstein, The Focal Adhesion: A Regulated Component of Aortic Stiffness, PLoS ONE, vol.315, issue.4, p.62461, 2013.
DOI : 10.1371/journal.pone.0062461.g005

M. Thomas, Angiopoietin-2 Stimulation of Endothelial Cells Induces ??v??3 Integrin Internalization and Degradation, Journal of Biological Chemistry, vol.113, issue.31, pp.23842-23849097543, 2010.
DOI : 10.1038/sj.onc.1207390

J. Wei, Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation, Anticancer Res, vol.28, pp.327-334, 2008.

Y. Tian, G. Gawlak, J. J. O-'donnell, A. A. Birukova, and K. G. Birukov, Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch, Journal of Biological Chemistry, vol.4, issue.19, pp.10032-10045, 2016.
DOI : 10.1007/s00441-013-1755-y

K. Lange, Endothelin Receptor Type B Counteracts Tenascin-C-Induced Endothelin Receptor Type A-Dependent Focal Adhesion and Actin Stress Fiber Disorganization, Cancer Research, vol.67, issue.13, pp.6163-6173, 2007.
DOI : 10.1158/0008-5472.CAN-06-3348

URL : http://cancerres.aacrjournals.org/content/canres/67/13/6163.full.pdf

E. Colucci-guyon, Mice lacking vimentin develop and reproduce without an obvious phenotype, Cell, vol.79, issue.4, pp.679-694, 1994.
DOI : 10.1016/0092-8674(94)90553-3

H. Louis, Role of ??1beta1-integrin in arterial stiffness and angiotensin-induced arterial wall hypertrophy in mice, AJP: Heart and Circulatory Physiology, vol.293, issue.4, pp.2597-2604, 2007.
DOI : 10.1152/ajpheart.00299.2007