R. Do, Common variants associated with plasma triglycerides and risk for coronary artery disease, Nature Genetics, vol.45, issue.11, pp.1345-13522795, 2013.
DOI : 10.2307/1268249

R. K. Upadhyay, Emerging Risk Biomarkers in Cardiovascular Diseases and Disorders, Journal of Lipids, vol.15, issue.1, p.971453, 2015.
DOI : 10.1371/journal.pone.0095309

URL : http://doi.org/10.1155/2015/971453

M. Miller, Triglycerides and Cardiovascular Disease: A Scientific Statement From the American Heart Association, Circulation, vol.123, issue.20, pp.2292-2333, 2011.
DOI : 10.1161/CIR.0b013e3182160726

P. P. Toth, M. Grabner, N. Ramey, and K. Higuchi, Clinical and economic outcomes in a real-world population of patients with elevated triglyceride levels, Atherosclerosis, vol.237, issue.2, pp.790-797
DOI : 10.1016/j.atherosclerosis.2014.09.029

I. Surakka, The impact of low-frequency and rare variants on lipid levels, Nature Genetics, vol.36, issue.6, pp.589-5973300, 2015.
DOI : 10.1016/j.ajhg.2010.11.011

T. M. Teslovich, Biological, clinical and population relevance of 95 loci for blood lipids, Nature, vol.325, issue.7307, pp.707-713, 2010.
DOI : 10.1038/nature09270

L. M. Belalcazar, Lifestyle Intervention for Weight Loss and Cardiometabolic Changes in the Setting of Glucokinase Regulatory Protein InhibitionCLINICAL PERSPECTIVE, Circulation: Cardiovascular Genetics, vol.9, issue.1, pp.71-78, 2016.
DOI : 10.1161/CIRCGENETICS.115.001192

A. S. Wierzbicki, T. C. Hardman, and A. Viljoen, New lipid-lowering drugs: an update, International Journal of Clinical Practice, vol.373, issue.9672, pp.270-280, 2012.
DOI : 10.1016/S0140-6736(09)60611-5

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-1241.2011.02867.x/pdf

V. K. Cortessis, Environmental epigenetics: prospects for studying epigenetic mediation of exposure???response relationships, Human Genetics, vol.125, issue.2, pp.1565-158910, 2012.
DOI : 10.1093/toxsci/kfr320

K. J. Dick, DNA methylation and body-mass index: A genome-wide analysis. The Lancet 383, pp.10-1016, 1990.

F. Gagnon, D. Aïssi, A. Carrié, P. Morange, and D. Trégouët, locus with lipid plasma levels, Journal of Lipid Research, vol.55, issue.7, pp.1189-119110, 2014.
DOI : 10.1038/nature11247

W. H. Robinson, T. M. Lindstrom, R. K. Cheung, and J. Sokolove, Mechanistic biomarkers for clinical decision making in rheumatic diseases, Nature Reviews Rheumatology, vol.56, issue.5, pp.267-276, 2013.
DOI : 10.1002/art.22382

I. M. Reis, K. Ramachandran, C. Speer, E. Gordian, and R. Singal, Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease, British Journal of Cancer, vol.315, issue.3, pp.460-468, 2015.
DOI : 10.1016/j.canlet.2011.08.032

J. C. Chambers, Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study, The Lancet Diabetes & Endocrinology, vol.3, issue.7, pp.10-1016, 2015.
DOI : 10.1016/S2213-8587(15)00127-8

T. K. Kelly, D. D. De-carvalho, and P. A. Jones, Epigenetic modifications as therapeutic targets, Nature Biotechnology, vol.7, issue.10, pp.1069-107810, 2010.
DOI : 10.1038/sj.bjc.6605293

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022972

F. I. Milagro, A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss, The FASEB Journal, vol.25, issue.4, pp.1378-138910, 2011.
DOI : 10.1096/fj.10-170365

K. S. Crider, Genomic DNA Methylation Changes in Response to Folic Acid Supplementation in a Population-Based Intervention Study among Women of Reproductive Age, PLoS ONE, vol.127, issue.12, 2011.
DOI : 10.1371/journal.pone.0028144.s002

A. C. Frazier-wood, Methylation at CPT1A locus is associated with lipoprotein subfraction profiles, Journal of Lipid Research, vol.57, issue.7, pp.1324-133010, 2014.
DOI : 10.1016/j.cll.2006.07.006

M. R. Irvin, Epigenome-Wide Association Study of Fasting Blood Lipids in the Genetics of Lipid-Lowering Drugs and Diet Network Study, Circulation, vol.130, issue.7, p.9158, 2014.
DOI : 10.1161/CIRCULATIONAHA.114.009158

K. F. Dekkers, Blood lipids influence DNA methylation in circulating cells, Genome Biology, vol.17, issue.138, pp.10-1186, 2016.

S. Sayols-baixeras, Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study, Human Molecular Genetics, vol.285, 2016.
DOI : 10.1093/hmg/ddw285

K. V. Braun, Epigenome-wide association study (ewas) on lipids: The rotterdam study, Clinical Epigenetics, vol.9, issue.15, pp.10-1186, 2017.

S. Guay, D. Brisson, B. Lamarche, D. Gaudet, and L. Bouchard, Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia, Epigenetics, vol.18, issue.5, pp.718-72910, 2014.
DOI : 10.1093/bioinformatics/bti473

L. Pfeiffer, DNA methylation of lipid-related genes affects blood lipid levels. Circulation: Cardiovascular Genetics. doi:10.1161/ circgenetics, p.804, 2015.

M. Mamtani, Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families, Clinical Epigenetics, vol.62, issue.1, pp.1-1410, 2016.
DOI : 10.1086/301844

G. Antoni, A multi-stage multi-design strategy provides strong evidence that the BAI3 locus is associated with early-onset venous thromboembolism, Journal of Thrombosis and Haemostasis, vol.207, issue.12, pp.2671-2679, 2010.
DOI : 10.1086/321195

G. Antoni, Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels, BMC Medical Genetics, vol.281, issue.Suppl 1, p.102, 2011.
DOI : 10.1074/jbc.M603100200

URL : https://hal.archives-ouvertes.fr/inserm-00617599

P. R. Rosenbaum, Replicating effects and biases. The American Statistician 55, pp.223-227000313001317098220, 2001.
DOI : 10.1198/000313001317098220

P. Kraft, E. Zeggini, and J. P. Ioannidis, Replication in genome-wide association studies. Statistical science: a review, of the Institute of Mathematical Statistics, vol.24, pp.561-57310, 2009.

S. Miller, D. Dykes, and H. Polesky, A simple salting out procedure for extracting DNA from human nucleated cells, Nucleic Acids Research, vol.16, issue.3, p.1215, 1988.
DOI : 10.1093/nar/16.3.1215

K. B. Michels, Recommendations for the design and analysis of epigenome-wide association studies, Nature Methods, vol.3, issue.10, pp.949-955, 2013.
DOI : 10.1093/nar/gkp335

D. Aïssi, Genome-Wide Investigation of DNA Methylation Marks Associated with FV Leiden Mutation, PLoS ONE, vol.11, issue.9, 2014.
DOI : 10.1371/journal.pone.0108087.s007

J. Maksimovic, L. Gordon, and A. Oshlack, SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips, Genome Biology, vol.13, issue.6, p.44, 2012.
DOI : 10.1186/1471-2105-11-587

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2012-13-6-r44?site=genomebiology.biomedcentral.com

T. J. Triche, D. J. Weisenberger, . Van-den, D. Berg, P. W. Laird et al., Low-level processing of Illumina Infinium DNA Methylation BeadArrays, Nucleic Acids Research, vol.41, issue.7, pp.90-90, 2013.
DOI : 10.1093/nar/gkt090

Y. Chen, Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray, Epigenetics, vol.8, issue.2, pp.203-20910, 2013.
DOI : 10.1038/nature09534

L. J. Martin, Serum lipids, lipoproteins, and risk of breast cancer: A nested case-control study using multiple time points, Journal of the National Cancer Institute, vol.107, p.32, 2015.

L. E. Reinius, Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility, PLoS ONE, vol.4, issue.7, 2012.
DOI : 10.1371/journal.pone.0041361.s007

J. A. Gagnon-bartsch and T. P. Speed, Using control genes to correct for unwanted variation in microarray data, Biostatistics, vol.13, issue.3, pp.539-552, 2012.
DOI : 10.1093/biostatistics/kxr034

A. Jaffe and R. Irizarry, Accounting for cellular heterogeneity is critical in epigenome-wide association studies, Genome Biology, vol.15, issue.2, p.31, 2014.
DOI : 10.1186/gb-2014-15-2-r31

P. Du, Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis, BMC Bioinformatics, vol.11, issue.1, p.587, 2010.
DOI : 10.1186/1471-2105-11-587

S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Journal of Statistics, vol.6, pp.65-7010, 1979.

S. V. Andrews, C. Ladd-acosta, A. P. Feinberg, K. D. Hansen, and M. D. Fallin, Gap hunting " to characterize clustered probe signals in illumina methylation array data, Epigenetics & Chromatin, vol.9, issue.56, pp.10-1186, 2016.
DOI : 10.1101/059659

S. N. Wood, Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.70, issue.1, pp.3-36, 2011.
DOI : 10.1137/1.9781611970128

V. Eye, A. Schuster, and C. , Regression analysis for social sciences, 1998.

S. Aslibekyan, Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference, Obesity, vol.9, issue.Suppl 2, pp.1493-150110, 2015.
DOI : 10.4161/epi.27119

URL : http://onlinelibrary.wiley.com/doi/10.1002/oby.21111/pdf

J. T. Bell, DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines, Genome Biology, vol.12, issue.1, p.10, 2011.
DOI : 10.1038/nature08625

C. J. Willer, Discovery and refinement of loci associated with lipid levels, Nature Genetics, vol.18, issue.11, p.2797, 2013.
DOI : 10.1371/journal.pgen.1000730

M. Brion, B. Benyamin, P. Visscher, and G. Smith, Beyond the Single SNP: Emerging Developments in Mendelian Randomization in the ???Omics??? Era, Current Epidemiology Reports, vol.380, issue.2, pp.228-23610, 2014.
DOI : 10.1016/S0140-6736(12)60312-2

C. L. Relton and G. Davey-smith, Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease, International Journal of Epidemiology, vol.41, issue.1, pp.161-17610, 2012.
DOI : 10.1093/ije/dyr233

Y. Rosseel, Lavaan: An r package for structural equation modeling, 2012.

H. Naeem, Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array, BMC Genomics, vol.15, issue.1, pp.10-1186, 2014.
DOI : 10.1097/PAT.0b013e3283511c96

Y. Liu, Methylomics of gene expression in human monocytes, Human Molecular Genetics, vol.22, issue.24, pp.5065-5074, 2013.
DOI : 10.1093/hmg/ddt356

T. Zeller, Genetics and Beyond ??? The Transcriptome of Human Monocytes and Disease Susceptibility, PLoS ONE, vol.18, issue.5, 2010.
DOI : 10.1371/journal.pone.0010693.s012

D. E. Bild, Multi-Ethnic Study of Atherosclerosis: Objectives and Design, American Journal of Epidemiology, vol.156, issue.9, pp.871-88110, 2002.
DOI : 10.1093/aje/kwf113

B. E. Bernstein, The NIH Roadmap Epigenomics Mapping Consortium, Nature Biotechnology, vol.28, issue.10, pp.1045-104810, 2010.
DOI : 10.1038/nature06258

P. A. Jones, Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nature Reviews Genetics, vol.12, issue.7, pp.484-492, 2012.
DOI : 10.1038/nrg2957

R. A. Mcpherson, M. R. Pincus, and J. B. Henry, 11207 | DOI:10.1038/s41598-017-09552-z 58 Henry's clinical diagnosis and management by laboratory methods, 2007.

J. Ernst, Mapping and analysis of chromatin state dynamics in nine human cell types, Nature, vol.125, issue.7345, pp.43-49, 2011.
DOI : 10.1016/j.cell.2006.02.041

K. Yoshida, Targeted Disruption of the Mouse 3-Phosphoglycerate Dehydrogenase Gene Causes Severe Neurodevelopmental Defects and Results in Embryonic Lethality, Journal of Biological Chemistry, vol.245, issue.5, pp.3573-3577, 2004.
DOI : 10.1042/bj2450609

T. S. Worgall, In Sphingolipids and metabolic disease, pp.139-148, 2011.

S. M. Hammad, In Sphingolipids and metabolic disease, pp.57-66, 2011.

I. Duivenvoorden, Dietary sphingolipids lower plasma cholesterol and triacylglycerol and prevent liver steatosis in APOE* 3

. Leiden-mice, The American journal of clinical nutrition 84, pp.312-321, 2006.

L. Ohlsson, H. Burling, R. Duan, and Å. Nilsson, Effects of a sphingolipid-enriched dairy formulation on postprandial lipid concentrations, European Journal of Clinical Nutrition, vol.205, issue.11, pp.1344-1349, 2010.
DOI : 10.1038/ejcn.2010.164

URL : https://hal.archives-ouvertes.fr/hal-00570708

V. R. Ramprasath, P. J. Jones, D. D. Buckley, L. A. Woollett, and J. Heubi, Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans, Lipids in health and disease, 2013.
DOI : 10.1161/01.ATV.13.2.247

T. W. Ng, Dose-Dependent Effects of Rosuvastatin on the Plasma Sphingolipidome and Phospholipidome in the Metabolic Syndrome, The Journal of Clinical Endocrinology & Metabolism, vol.99, issue.11, pp.2335-2340, 2014.
DOI : 10.1210/jc.2014-1665

L. Tabatabaie, ) are distributed throughout the protein and result in altered enzyme kinetics, Human Mutation, vol.279, issue.Pt 2, pp.749-75610, 2009.
DOI : 10.1128/MCB.17.3.1535

R. Acuna-hidalgo, Neu-Laxova Syndrome Is a Heterogeneous Metabolic Disorder Caused by Defects in Enzymes of the L-Serine Biosynthesis Pathway, The American Journal of Human Genetics, vol.95, issue.3, pp.285-293, 2014.
DOI : 10.1016/j.ajhg.2014.07.012

T. J. Vanderweele, E. J. Tchetgen-tchetgen, M. Cornelis, and P. Kraft, Methodological Challenges in Mendelian Randomization, Epidemiology, vol.25, issue.3, pp.427-43510, 2014.
DOI : 10.1097/EDE.0000000000000081