M. Ksantini, E. Lafont, B. Bocquet, I. Meunier, and C. P. Hamel, Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa, European Journal of Ophthalmology, vol.22, issue.4, pp.647-653, 2012.
DOI : 10.5301/ejo.5000096

S. J. Bowne, M. M. Humphries, L. S. Sullivan, P. F. Kenna, L. C. Tam et al., A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement, European Journal of Human Genetics, vol.47, issue.10, pp.1074-1081, 2011.
DOI : 10.1093/hmg/ddn107

URL : https://hal.archives-ouvertes.fr/hal-00649449

A. Gal, Y. Li, D. A. Thompson, J. Weir, U. Orth et al., Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa, Nat. Genet, vol.26, pp.270-271, 2000.

W. Zhang, X. Zhang, H. Wang, A. K. Sharma, A. O. Edwards et al., Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy, AJP: Cell Physiology, vol.304, issue.5, pp.440-449, 2013.
DOI : 10.1152/ajpcell.00363.2012

J. Bennett, M. Ashtari, J. Wellman, K. A. Marshall, L. L. Cyckowski et al., AAV2 Gene Therapy Readministration in Three Adults with Congenital Blindness, Science Translational Medicine, vol.26, issue.8, pp.120-135, 2012.
DOI : 10.1089/aid.2009.0242

T. Léveillard, S. Mohand-saïd, O. Lorentz, D. Hicks, A. C. Fintz et al., Identification and characterization of rod-derived cone viability factor, Nature Genetics, vol.124, issue.7, pp.755-759, 2004.
DOI : 10.1093/nar/25.17.3389

L. C. Byrne, D. Dalkara, G. Luna, S. K. Fisher, E. Clérin et al., Viral-mediated RdCVF and RdCVFL expression protects cone and rod photoreceptors in retinal degeneration, Journal of Clinical Investigation, vol.125, issue.1, pp.105-116, 2015.
DOI : 10.1172/JCI65654DS1

Y. Yang, S. Mohand-said, A. Danan, M. Simonutti, V. Fontaine et al., Functional Cone Rescue by RdCVF Protein in a Dominant Model of Retinitis Pigmentosa, Molecular Therapy, vol.17, issue.5, pp.787-795, 2009.
DOI : 10.1038/mt.2009.28

URL : https://hal.archives-ouvertes.fr/inserm-00464512

S. V. Girman, S. Wang, and R. D. Lund, Time course of deterioration of rod and cone function in RCS rat and the effects of subretinal cell grafting: a light- and dark-adaptation study, Vision Research, vol.45, issue.3, pp.343-354, 2005.
DOI : 10.1016/j.visres.2004.08.023

P. Algvere, L. Berglin, P. Gouras, and Y. Sheng, Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.232, issue.12, pp.707-716, 1994.
DOI : 10.1007/BF00184273

P. J. Coffey, S. Girman, S. M. Wang, L. Hetherington, D. J. Keegan et al., Long-term preservation of cortically dependent visual function in RCS rats by transplantation, Nature Neuroscience, vol.5, issue.1, pp.53-56, 2002.
DOI : 10.1038/nn782

S. Binder, U. Stolba, I. Krebs, L. Kellner, C. Jahn et al., Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study, American Journal of Ophthalmology, vol.133, issue.2, pp.215-225, 2002.
DOI : 10.1016/S0002-9394(01)01373-3

L. Da-cruz, F. K. Chen, A. Ahmado, J. Greenwood, and P. Coffey, RPE transplantation and its role in retinal disease, Progress in Retinal and Eye Research, vol.26, issue.6, pp.598-635, 2007.
DOI : 10.1016/j.preteyeres.2007.07.001

D. Priore, L. V. Kaplan, H. J. Tezel, T. H. Hayashi, N. Berger et al., Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration, American Journal of Ophthalmology, vol.131, issue.4, pp.472-480, 2001.
DOI : 10.1016/S0002-9394(00)00850-3

E. Salero, T. A. Blenkinsop, B. Corneo, A. Harris, D. Rabin et al., Adult Human RPE Can Be Activated into a Multipotent Stem Cell that Produces Mesenchymal Derivatives, Cell Stem Cell, vol.10, issue.1, pp.88-95, 2012.
DOI : 10.1016/j.stem.2011.11.018

R. P. Casaroli-marano, R. Pagan, and S. Vilaró, Epithelial-mesenchymal transition in proliferative vitreoretinopathy: intermediate filament protein expression in retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci, vol.40, pp.2062-2072, 1999.

J. R. Martínez-morales, V. Dolez, I. Rodrigo, R. Zaccarini, L. Leconte et al., OTX2 Activates the Molecular Network Underlying Retina Pigment Epithelium Differentiation, Journal of Biological Chemistry, vol.1574, issue.24, pp.21721-21731, 2003.
DOI : 10.1016/S0167-4781(01)00339-6

J. R. Martínez-morales, I. Rodrigo, and P. Bovolenta, Eye development: a view from the retina pigmented epithelium, BioEssays, vol.237, issue.7, pp.766-777, 2004.
DOI : 10.1006/dbio.2001.0379

S. Tamiya, L. Liu, and H. J. Kaplan, Epithelial-Mesenchymal Transition and Proliferation of Retinal Pigment Epithelial Cells Initiated upon Loss of Cell-Cell Contact, Investigative Opthalmology & Visual Science, vol.51, issue.5, pp.2755-2763, 2010.
DOI : 10.1167/iovs.09-4725

J. C. Booij, J. B. Ten-brink, S. M. Swagemakers, A. J. Verkerk, A. H. Essing et al., A New Strategy to Identify and Annotate Human RPE-Specific Gene Expression, PLoS ONE, vol.147, issue.5, p.9341, 2010.
DOI : 10.1371/journal.pone.0009341.s004

T. Masuda and N. Esumi, Expression in the Retinal Pigment Epithelium, Journal of Biological Chemistry, vol.8, issue.35, pp.26933-26944, 2010.
DOI : 10.1167/iovs.07-1105

E. F. Nandrot, M. Anand, M. Sircar, and S. C. Finnemann, Novel role for ??vbeta5-integrin in retinal adhesion and its diurnal peak, AJP: Cell Physiology, vol.290, issue.4, pp.1256-1262, 2006.
DOI : 10.1152/ajpcell.00480.2005

E. Nandrot, E. M. Dufour, A. C. Provost, M. O. Péquignot, S. Bonnel et al., Homozygous Deletion in the Coding Sequence of the c-mer Gene in RCS Rats Unravels General Mechanisms of Physiological Cell Adhesion and Apoptosis, Neurobiology of Disease, vol.7, issue.6, pp.586-599, 2000.
DOI : 10.1006/nbdi.2000.0328

E. F. Nandrot, K. E. Silva, C. Scelfo, and S. C. Finnemann, Retinal pigment epithelial cells use a MerTK-dependent mechanism to limit the phagocytic particle binding activity of ??v??5 integrin, Biology of the Cell, vol.42, issue.6, pp.326-341, 2012.
DOI : 10.1083/jcb.42.2.392

A. Nishida, A. Furukawa, C. Koike, Y. Tano, S. Aizawa et al., Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development, Nature Neuroscience, vol.6, issue.12, pp.1255-1263, 2003.
DOI : 10.1038/nn1155

V. Courtois, G. Chatelain, Z. Y. Han, N. Le-novère, G. Brun et al., New Otx2 mRNA isoforms expressed in the mouse brain, Journal of Neurochemistry, vol.275, issue.4, pp.840-853, 2003.
DOI : 10.1046/j.1471-4159.2003.01583.x

URL : https://hal.archives-ouvertes.fr/hal-00023763

J. F. Hejtmancik, X. Jiao, A. Li, Y. V. Sergeev, X. Ding et al., Mutations in KCNJ13 Cause Autosomal-Dominant Snowflake Vitreoretinal Degeneration, The American Journal of Human Genetics, vol.82, issue.1, pp.174-180, 2008.
DOI : 10.1016/j.ajhg.2007.08.002

P. I. Sergouniotis, A. E. Davidson, D. S. Mackay, Z. Li, X. Yang et al., Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, 2011.

B. R. Pattnaik, P. K. Shahi, M. J. Marino, X. Liu, N. York et al., A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16) Hum Mutat, pp.720-727, 2015.

S. Reichman, A. Terray, A. Slembrouck, C. Nanteau, G. Orieux et al., From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium, Proc. Natl. Acad. Sci. USA 111, pp.8518-8523, 2014.
DOI : 10.1021/cb4001712

D. Cruz, P. M. Yasumura, D. Weir, J. Matthes, M. T. Abderrahim et al., Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat, Human Molecular Genetics, vol.9, issue.4, pp.645-651, 2000.
DOI : 10.1093/hmg/9.4.645

I. Pinilla, R. D. Lund, and Y. Sauvé, Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats, Vision Research, vol.44, issue.21, pp.2467-2474, 2004.
DOI : 10.1016/j.visres.2004.05.020

I. Pinilla, N. Cuenca, Y. Sauvé, S. Wang, and R. D. Lund, Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat, Experimental Eye Research, vol.85, issue.3, pp.381-392, 2007.
DOI : 10.1016/j.exer.2007.06.002

N. Aït-ali, R. Fridlich, G. Millet-puel, E. Clérin, F. Delalande et al., Rod-Derived Cone Viability Factor Promotes Cone Survival by Stimulating Aerobic Glycolysis, Cell, vol.161, issue.4, pp.817-832, 2015.
DOI : 10.1016/j.cell.2015.03.023

J. J. Alexander, Y. Umino, D. Everhart, B. Chang, S. H. Min et al., Restoration of cone vision in a mouse model of achromatopsia, Nature Medicine, vol.8, issue.6, pp.685-687, 2007.
DOI : 10.1038/nm1596

Y. Yang, S. Mohand-said, T. Léveillard, V. Fontaine, M. Simonutti et al., Transplantation of Photoreceptor and Total Neural Retina Preserves Cone Function in P23H Rhodopsin Transgenic Rat, PLoS ONE, vol.18, issue.8, 2010.
DOI : 10.1371/journal.pone.0013469.s007

T. Léveillard and J. A. Sahel, Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling, Science Translational Medicine, vol.19, issue.2, pp.26-42, 2010.
DOI : 10.1093/hmg/ddp484

G. H. Jacobs, J. A. Fenwick, W. , and G. A. , Cone-based vision of rats for ultraviolet and visible lights, J. Exp. Biol, vol.204, pp.2439-2446, 2001.

Y. Li, W. Tao, L. Luo, D. Huang, K. Kauper et al., CNTF Induces Regeneration of Cone Outer Segments in a Rat Model of Retinal Degeneration, PLoS ONE, vol.5, issue.3, p.9495, 2010.
DOI : 10.1371/journal.pone.0009495.g008

L. N. Ayton, N. V. Apollo, M. Varsamidis, P. N. Dimitrov, R. H. Guymer et al., Assessing Residual Visual Function in Severe Vision Loss, Investigative Opthalmology & Visual Science, vol.55, issue.3, pp.1332-1338, 2014.
DOI : 10.1167/iovs.13-12657

F. Béby, M. Housset, N. Fossat, L. Greneur, C. Flamant et al., Otx2 Gene Deletion in Adult Mouse Retina Induces Rapid RPE Dystrophy and Slow Photoreceptor Degeneration, PLoS ONE, vol.84, issue.7, 2010.
DOI : 10.1371/journal.pone.0011673.s006

M. Housset, A. Samuel, M. Ettaiche, A. Bemelmans, F. Béby et al., Loss of Otx2 in the Adult Retina Disrupts Retinal Pigment Epithelium Function, Causing Photoreceptor Degeneration, Journal of Neuroscience, vol.33, issue.24, pp.9890-9904, 2013.
DOI : 10.1523/JNEUROSCI.1099-13.2013

URL : https://hal.archives-ouvertes.fr/hal-00843349

M. Karali and S. Banfi, Inherited Retinal Dystrophies: The role of gene expression regulators, The International Journal of Biochemistry & Cell Biology, vol.61, pp.115-119, 2015.
DOI : 10.1016/j.biocel.2015.02.007

N. Esumi, S. Kachi, L. Hackler, . Jr, T. Masuda et al., BEST1 expression in the retinal pigment epithelium is modulated by OTX family members, Human Molecular Genetics, vol.18, issue.1, pp.128-141, 2009.
DOI : 10.1093/hmg/ddn323

S. Kusaka, A. Inanobe, A. Fujita, Y. Makino, M. Tanemoto et al., Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium, The Journal of Physiology, vol.41, issue.suppl., pp.27-36, 2001.
DOI : 10.1113/jphysiol.1993.sp019669

D. Yang, A. Pan, A. Swaminathan, G. Kumar, and B. A. Hughes, Expression and Localization of the Inwardly Rectifying Potassium Channel Kir7.1 in Native Bovine Retinal Pigment Epithelium, Investigative Opthalmology & Visual Science, vol.44, issue.7, pp.3178-3185, 2003.
DOI : 10.1167/iovs.02-1189

L. L. Daniele, B. Sauer, S. M. Gallagher, E. N. Pugh, . Jr et al., Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice, AJP: Cell Physiology, vol.295, issue.2, pp.451-457, 2008.
DOI : 10.1152/ajpcell.00124.2008

L. G. Fritsche, W. Chen, M. Schu, B. L. Yaspan, Y. Yu et al., Seven new loci associated with age-related macular degeneration, Nature Genetics, vol.491, issue.4, pp.433-439, 2013.
DOI : 10.1093/bioinformatics/bts191

R. Wen, W. Tao, L. Luo, D. Huang, K. Kauper et al., Regeneration of Cone Outer Segments Induced by CNTF, 2012.
DOI : 10.1007/978-1-4614-0631-0_13

F. C. Schlichtenbrede, A. Macneil, J. W. Bainbridge, M. Tschernutter, A. J. Thrasher et al., Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration, Gene Therapy, vol.10, issue.6, pp.523-527, 2003.
DOI : 10.1038/sj.gt.3301929

A. Prochiantz, J. Fuchs, D. Nardo, and A. A. , Postnatal signalling with homeoprotein transcription factors, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.282, issue.12, 2014.
DOI : 10.1074/jbc.M609246200

S. Binder, I. Krebs, R. D. Hilgers, A. Abri, U. Stolba et al., Outcome of Transplantation of Autologous Retinal Pigment Epithelium in Age-Related Macular Degeneration: A Prospective Trial, Investigative Opthalmology & Visual Science, vol.45, issue.11, pp.4151-4160, 2004.
DOI : 10.1167/iovs.04-0118

C. I. Falkner-radler, I. Krebs, C. Glittenberg, B. Povazay, W. Drexler et al., Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study, British Journal of Ophthalmology, vol.95, issue.3, pp.370-375, 2011.
DOI : 10.1136/bjo.2009.176305

Y. Saigo, T. Abe, M. Hojo, H. Tomita, E. Sugano et al., Transplantation of Transduced Retinal Pigment Epithelium in Rats, Investigative Opthalmology & Visual Science, vol.45, issue.6, 1996.
DOI : 10.1167/iovs.03-0777

R. D. Lund, P. Adamson, Y. Sauvé, D. J. Keegan, S. V. Girman et al., Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats, Proc. Natl. Acad. Sci. USA 98, pp.9942-9947, 2001.
DOI : 10.1001/archopht.1997.01100150055009

M. N. Delyfer, N. Aït-ali, H. Camara, E. Clérin, J. F. Korobelnik et al., Transcriptomic analysis of human retinal surgical specimens using jouRNAI, J. Vis. Exp, vol.78, p.50375, 2013.

D. Dalkara, K. D. Kolstad, N. Caporale, M. Visel, R. R. Klimczak et al., Inner Limiting Membrane Barriers to AAV-mediated Retinal Transduction From the Vitreous, Molecular Therapy, vol.17, issue.12, pp.2096-2102, 2009.
DOI : 10.1038/mt.2009.181

S. Reichman and O. Goureau, Production of Retinal Cells from Confluent Human iPS Cells, Methods Mol. Biol, vol.1357, pp.339-351, 2016.
DOI : 10.1007/7651_2014_143

K. M. Dorval, B. P. Bobechko, H. Fujieda, S. Chen, D. J. Zack et al., CHX10 Targets a Subset of Photoreceptor Genes, Journal of Biological Chemistry, vol.18, issue.2, pp.744-751, 2006.
DOI : 10.1093/hmg/10.15.1571

S. G. Pattenden, R. Klose, E. Karaskov, and R. Bremner, Interferon-gammainduced chromatin remodeling at the CIITA locus is BRG1 dependent, EMBO J, vol.21, 1978.

S. Reichman, R. K. Kalathur, S. Lambard, N. Aït-ali, Y. Yang et al., The homeobox gene CHX10/VSX2 regulates RdCVF promoter activity in the inner retina, Human Molecular Genetics, vol.19, issue.2, pp.250-261, 2010.
DOI : 10.1093/hmg/ddp484

URL : https://hal.archives-ouvertes.fr/inserm-00465889

G. T. Prusky, N. M. Alam, S. Beekman, D. , and R. M. , Rapid Quantification of Adult and Developing Mouse Spatial Vision Using a Virtual Optomotor System, Investigative Opthalmology & Visual Science, vol.45, issue.12, pp.4611-4616, 2004.
DOI : 10.1167/iovs.04-0541

R. A. Pearson, A. C. Barber, M. Rizzi, C. Hippert, T. Xue et al., Restoration of vision after transplantation of photoreceptors, Nature, vol.28, issue.7396, pp.99-103, 2012.
DOI : 10.1016/j.neurobiolaging.2006.07.023

O. Genevois, M. Paques, M. Simonutti, R. Sercombe, J. Seylaz et al., Microvascular Remodeling after Occlusion-Recanalization of a Branch Retinal Vein in Rats, Investigative Opthalmology & Visual Science, vol.45, issue.2, pp.594-600, 2004.
DOI : 10.1167/iovs.03-0764

M. Paques, M. Simonutti, M. J. Roux, S. Picaud, E. Levavasseur et al., High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse, Vision Research, vol.46, issue.8-9, pp.1336-1345, 2006.
DOI : 10.1016/j.visres.2005.09.037

R. Adler and M. Hatlee, Plasticity and differentiation of embryonic retinal cells after terminal mitosis, Science, vol.243, issue.4889, pp.391-393, 1989.
DOI : 10.1126/science.2911751