J. Agren, A. Sundström, T. Håfström, and B. Segerman, Gegenees: fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups, PLoS ONE, vol.7, 2012.

R. K. Aziz, D. Bartels, A. A. Best, M. Dejongh, T. Disz et al., The RAST Server: Rapid Annotations using Subsystems Technology, BMC Genomics, vol.9, issue.1, pp.75-85, 2008.
DOI : 10.1186/1471-2164-9-75

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-9-75?site=bmcgenomics.biomedcentral.com

M. Castillo, G. Skene, M. Roca, M. Anguita, I. Badiola et al., Application of 16S rRNA gene-targetted fluorescence in situ hybridization and restriction fragment length polymorphism to study porcine microbiota along the gastrointestinal tract in response to different sources of dietary fibre, FEMS Microbiology Ecology, vol.59, issue.1, pp.138-146, 2007.
DOI : 10.1111/j.1574-6941.2006.00204.x

J. Z. Chan, M. R. Halachev, N. J. Loman, C. Constantinidou, and M. J. Pallen, Defining bacterial species in the genomic era: insights from the genus Acinetobacter, BMC Microbiology, vol.12, issue.1, pp.302-312, 2012.
DOI : 10.1093/nar/25.17.3389

A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, Mauve: Multiple Alignment of Conserved Genomic Sequence With Rearrangements, Genome Research, vol.14, issue.7, pp.1394-1403, 2004.
DOI : 10.1101/gr.2289704

S. H. Duncan, G. L. Hold, H. J. Harmsen, C. S. Stewart, and H. J. Flint, Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov, Int. J. Syst. Evol. Microbiol, vol.52, pp.2141-2146, 2002.

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, vol.29, issue.8, pp.1072-1075, 2013.
DOI : 10.1093/bioinformatics/btt086

URL : https://academic.oup.com/bioinformatics/article-pdf/29/8/1072/17106244/btt086.pdf

R. Hansen, R. K. Russell, C. Reiff, P. Louis, F. Mcintosh et al., Microbiota of De-Novo Pediatric IBD: Increased Faecalibacterium Prausnitzii and Reduced Bacterial Diversity in Crohn's But Not in Ulcerative Colitis, The American Journal of Gastroenterology, vol.19, issue.12, pp.1913-1922, 2012.
DOI : 10.1128/AEM.66.5.2263-2266.2000

B. Hippe, M. Remely, E. Aumueller, A. Pointner, U. Magnet et al., phylotypes in type two diabetic, obese, and lean control subjects, Beneficial Microbes, vol.7, issue.4, pp.511-517, 2016.
DOI : 10.3920/BM2015.0075

D. H. Huson, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, vol.23, issue.2, pp.254-267, 2005.
DOI : 10.1093/molbev/msj030

J. M. Janda, A. , and S. L. , 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls, Journal of Clinical Microbiology, vol.45, issue.9, pp.2761-2764, 2007.
DOI : 10.1128/JCM.01228-07

M. Kim, H. S. Oh, S. C. Park, C. , and J. , Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.64, issue.Pt 2, pp.346-351, 2014.
DOI : 10.1099/ijs.0.059774-0

M. K. Kimura and J. M. Tiedje, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences Genomic insights that advance the species definition for prokaryotes, J. Mol. Evol. Proc. Natl. Acad. Sci. U.S.A, vol.16, issue.102, pp.111-120, 1980.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Molecular Biology and Evolution, vol.33, issue.7, pp.1870-1874, 2016.
DOI : 10.1093/molbev/msw054

L. Li, C. J. Stoeckert, R. , and D. S. , OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes, Genome Research, vol.13, issue.9, pp.2178-2189, 2003.
DOI : 10.1101/gr.1224503

Y. Y. Liu, C. S. Chiou, C. , and C. C. , PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing, Scientific Reports, vol.17, issue.1, 2016.
DOI : 10.1007/BF01734359

URL : http://www.nature.com/articles/srep36213.pdf

M. Lopez-siles, S. H. Duncan, L. J. Garcia-gil, and M. Martinez-medina, Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics, The ISME Journal, vol.4, issue.4, pp.841-852, 2017.
DOI : 10.1186/1741-7007-11-61

M. Lopez-siles, T. M. Khan, S. H. Duncan, H. J. Harmsen, L. J. Garcia-gil et al., Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth, Applied and Environmental Microbiology, vol.78, issue.2, pp.420-428, 1128.
DOI : 10.1128/AEM.06858-11

M. Lopez-siles, M. Martinez-medina, R. Surís-valls, X. Aldeguer, M. Sabat-mir et al., Changes in the Abundance of Faecalibacterium prausnitzii Phylogroups I and II in the Intestinal Mucosa of Inflammatory Bowel Disease and Patients with Colorectal Cancer, Inflammatory Bowel Diseases, vol.22, issue.1, pp.28-41, 2016.
DOI : 10.1097/MIB.0000000000000590

M. C. Maiden, M. J. Van-rensburg, J. E. Bray, S. G. Earle, S. A. Ford et al., MLST revisited: the gene-by-gene approach to bacterial genomics, Nature Reviews Microbiology, vol.41, issue.10, pp.728-736, 1038.
DOI : 10.1093/nar/gks1297

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980634/pdf

R. Martín, S. Miquel, L. Benevides, C. Bridonneau, V. Robert et al., Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic, Frontiers in Microbiology, vol.11, 2017.
DOI : 10.1186/1741-7007-11-61

S. Miquel, R. Martín, O. Rossi, L. G. Bermúdez-humarán, J. M. Chatel et al., Faecalibacterium prausnitzii and human intestinal health, Current Opinion in Microbiology, vol.16, issue.3, pp.255-261, 2013.
DOI : 10.1016/j.mib.2013.06.003

URL : https://hal.archives-ouvertes.fr/hal-00842645

G. M. Nava and T. S. Stappenbeck, Diversity of the autochthonous colonic microbiota, Gut Microbes, vol.6, issue.2, 2011.
DOI : 10.1097/01.mib.0000235828.09305.0c

G. Oikonomou, A. G. Teixeira, C. Foditsch, M. L. Bicalho, V. S. Machado et al., Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth, PLoS ONE, vol.215, issue.244, 2013.
DOI : 10.1371/journal.pone.0063157.g009

M. Rajili´crajili´c-stojanovi´cstojanovi´c, E. Biagi, H. G. Heilig, K. Kajander, R. A. Kekkonen et al., Global and Deep Molecular Analysis of Microbiota Signatures in Fecal Samples From Patients With Irritable Bowel Syndrome, Gastroenterology, vol.141, issue.5, pp.1792-1801, 2011.
DOI : 10.1053/j.gastro.2011.07.043

A. J. Scupham, B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermudez-humaran et al., Succession in the intestinal microbiota of preadolescent turkeys Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, FEMS Microbiol. Ecol. Proc. Natl. Acad. Sci. U.S.A, vol.60, issue.105, pp.136-147, 2007.

H. Song, Y. Yoo, J. Hwang, Y. Na, K. et al., Faecalibacterium prausnitzii subspecies???level dysbiosis in the human gut microbiome underlying atopic dermatitis, Journal of Allergy and Clinical Immunology, vol.137, issue.3, pp.852-860, 2016.
DOI : 10.1016/j.jaci.2015.08.021

A. Swidsinski, V. Loening-baucke, M. Vaneechoutte, and Y. Doerffel, Active Crohn??s disease and ulcerative colitis can be specifically diagnosed and monitored based on the biostructure of the fecal flora, Inflammatory Bowel Diseases, vol.14, issue.2, pp.147-161, 2008.
DOI : 10.1002/ibd.20330

J. Tap, S. Mondot, F. Levenez, E. Pelletier, C. Caron et al., Towards the human intestinal microbiota phylogenetic core, Environmental Microbiology, vol.134, issue.Suppl. 4, 2009.
DOI : 10.1007/978-1-4471-3443-5_2