E. Deutsch, C. Ball, J. Berman, G. Bova, and A. Brazma, Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE), Nature Biotechnology, vol.10, issue.3, pp.305-31210, 1038.
DOI : 10.1016/S0002-9440(10)63171-9

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367930/pdf

L. True, Quality control in molecular immunohistochemistry, Histochemistry and Cell Biology, vol.50, issue.2, pp.473-480, 2008.
DOI : 10.1093/ajcp/90.3.324

URL : https://link.springer.com/content/pdf/10.1007%2Fs00418-008-0481-0.pdf

C. Saper, A Guide to the Perplexed on the Specificity of Antibodies, Journal of Histochemistry & Cytochemistry, vol.28, issue.1, p.952770, 2008.
DOI : 10.1038/sj.icb.7100160

J. Bordeaux, A. Welsh, S. Agarwal, E. Killiam, and M. Baquero, Antibody validation, BioTechniques, vol.48, issue.3, pp.197-209, 2010.
DOI : 10.2144/000113382

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891910/pdf

R. Burry, Controls for Immunocytochemistry, Journal of Histochemistry & Cytochemistry, vol.39, issue.1, pp.6-12, 2011.
DOI : 10.1172/JCI104130

URL : http://journals.sagepub.com/doi/pdf/10.1369/jhc.2010.956920

U. Schnell, F. Dijk, K. Sjollema, and B. Giepmans, Immunolabeling artifacts and the need for live-cell imaging, Nature Methods, vol.611, issue.2, pp.152-158, 2012.
DOI : 10.1074/jbc.M703876200

F. Delsuc, H. Brinkmann, D. Chourrout, and P. H. , Tunicates and not cephalochordates are the closest living relatives of vertebrates, Nature, vol.13, issue.7079, pp.965-968, 2006.
DOI : 10.1093/oxfordjournals.molbev.a004134

URL : https://hal.archives-ouvertes.fr/halsde-00315436

P. Lemaire, W. Smith, and H. Nishida, Ascidians and the Plasticity of the Chordate Developmental Program, Current Biology, vol.18, issue.14, pp.620-631, 2008.
DOI : 10.1016/j.cub.2008.05.039

URL : https://hal.archives-ouvertes.fr/hal-00428987

N. Satoh, The ascidian tadpole larva: comparative molecular development and genomics, Nature Reviews Genetics, vol.4, issue.4, pp.285-295, 2003.
DOI : 10.1038/nrg1042

E. Conklin, The organization and cell lineage of the ascidian egg, J Acad Natl Sci Philadelphia, vol.13, pp.1-119, 1905.

S. Gilbert, Early Development in Selected Invertebrates, Developmental Biology. pp, pp.237-241, 2010.

T. Sawada and G. Schatten, Effects of cytoskeletal inhibitors on ooplasmic segregation and microtubule organization during fertilization and early development in the ascidian Molgula occidentalis, Developmental Biology, vol.132, issue.2, pp.331-342, 1989.
DOI : 10.1016/0012-1606(89)90230-3

F. Roegiers, C. Djediat, R. Dumollard, C. Rouvière, and C. Sardet, Phases of cytoplasmic and cortical reorganizations of the ascidian zygote between fertilization and first division, Development, vol.126, pp.3101-3117, 1999.

C. Sardet, A. Paix, F. Prodon, P. Dru, and J. Chenevert, From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo, Developmental Dynamics, vol.45, issue.7, pp.1716-1731, 2007.
DOI : 10.1051/medsci/2004204414

G. Reverberi, The mitochondrial pattern in the development of the ascidian egg, Experientia, vol.82, issue.2, pp.55-56, 1956.
DOI : 10.1086/physzool.24.4.30152142

M. Zalokar and C. Sardet, Tracing of cell lineage in embryonic development of Phallusia mammillata (ascidia) by vital staining of mitochondria, Developmental Biology, vol.102, issue.1, pp.195-205, 1984.
DOI : 10.1016/0012-1606(84)90184-2

H. Nishida, Regionality of egg cytoplasm that promotes muscle differentiation in embryo of the ascidian, Halocynthia roretzi, Development, vol.116, pp.521-529, 1992.

F. Roegiers, A. Mcdougall, and C. Sardet, The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg, Development, vol.121, pp.3457-3466, 1995.

T. Oka, R. Amikura, S. Kobayashi, H. Yamamoto, and H. Nishida, Localization of mitochondrial large ribosomal RNA in the myoplasm of the early ascidian embryo, Development, Growth and Differentiation, vol.41, issue.1, pp.1-8, 1999.
DOI : 10.1016/0925-4773(95)00359-9

C. Sardet, A. Mcdougall, H. Yasuo, J. Chenevert, and G. Pruliere, Embryological Methods in Ascidians: The Villefranche-sur-Mer Protocols, Methods Mol Biol, vol.770, pp.365-400, 2011.
DOI : 10.1007/978-1-61779-210-6_14

M. Kloc, S. Bilinski, and L. Etkin, The Balbiani Body and Germ Cell Determinants: 150 Years Later, Curr Top Dev Biol, vol.59, pp.1-3610, 2004.
DOI : 10.1016/S0070-2153(04)59001-4

R. Dumollard, M. Duchen, and C. Sardet, Calcium signals and mitochondria at fertilisation, Seminars in Cell & Developmental Biology, vol.17, issue.2, pp.314-323, 2006.
DOI : 10.1016/j.semcdb.2006.02.009

R. Zhou, B. Wang, J. Wang, H. Schatten, and Y. Zhang, Is the mitochondrial cloud the selection machinery for preferentially transmitting wild-type mtDNA between generations? Rewinding M??ller???s ratchet efficiently, Current Genetics, vol.50, issue.2, pp.101-107, 2010.
DOI : 10.1002/ajmg.1320570226

Y. Sasakura, Y. Oogai, T. Matsuoka, N. Satoh, and S. Awazu, Transposon mediated transgenesis in a marine invertebrate chordate: Ciona intestinalis, Genome Biology, vol.8, issue.Suppl 1, 2007.
DOI : 10.1186/gb-2007-8-s1-s3

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2007-8-s1-s3?site=genomebiology.biomedcentral.com

F. Prodon, J. Chenevert, C. Hébras, R. Dumollard, and E. Faure, Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors, Development, vol.137, issue.12, pp.2011-2021, 2010.
DOI : 10.1242/dev.047845

URL : http://dev.biologists.org/content/develop/137/12/2011.full.pdf

T. Endo, K. Ueno, K. Yonezawa, K. Mineta, and K. Hotta, CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality, Nucleic Acids Research, vol.39, issue.Database, pp.807-814, 2011.
DOI : 10.1093/nar/gkq1144

A. Stolfi and L. Christiaen, Genetic and Genomic Toolbox of the Chordate Ciona intestinalis, Genetics, vol.192, issue.1, pp.55-66, 2012.
DOI : 10.1534/genetics.112.140590

D. Vierra and S. Irvine, Optimized conditions for transgenesis of the ascidian Ciona using square wave electroporation, Development Genes and Evolution, vol.235, issue.1, pp.55-61, 2012.
DOI : 10.1002/dvdy.20815

E. Debus, K. Weber, and M. Osborn, Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides, Differentiation, vol.25, issue.1-3, pp.193-203, 1983.
DOI : 10.1111/j.1432-0436.1984.tb01355.x

C. Balaratnasingam, W. Morgan, L. Bass, M. Kang, and S. Cringle, Axotomy-induced cytoskeleton changes in unmyelinated mammalian central nervous system axons, Neuroscience, vol.177, 2011.
DOI : 10.1016/j.neuroscience.2010.12.053

D. Arboleda, S. Forostyak, P. Jendelova, D. Marekova, and T. Amemori, Transplantation of Predifferentiated Adipose-Derived Stromal Cells for the Treatment of Spinal Cord Injury, Cellular and Molecular Neurobiology, vol.7, issue.2, pp.1113-1122, 2011.
DOI : 10.1089/107632701300062859

F. Franke, W. Schachenmayr, M. Osborn, and M. Altmannsberger, Unexpected immunoreactivities of intermediate filament antibodies in human brain and brain tumors, Am J Pathol, vol.139, pp.67-79, 1991.

C. Corrêa, S. Da-silva, J. Lowe, G. Tortelote, and M. Einicker-lamas, Identification of a neurofilament-like protein in the protocerebral tract of the crab Ucides cordatus, Cell and Tissue Research, vol.148, issue.3, pp.609-615, 2004.
DOI : 10.1007/s00441-004-0992-5

B. Swalla, M. Badgett, and W. Jeffery, Identification of a cytoskeletal protein localized in the myoplasm of ascidian eggs: localization is modified during anural development, Development, vol.111, pp.425-436, 1991.

W. Jeffery and B. Swalla, Factors necessary for restoring an evolutionary change in an anural ascidian embryo, Developmental Biology, vol.153, issue.2, pp.194-205, 1992.
DOI : 10.1016/0012-1606(92)90105-P

S. Chiba, Y. Miki, K. Ashida, M. Wada, and K. Tanaka, Interactions between cytoskeletal components during myoplasm rearrangement in ascidian eggs, Development, Growth and Differentiation, vol.41, issue.3, pp.265-272, 1999.
DOI : 10.1046/j.1440-169X.1999.413433.x

T. Nishikata and M. Wada, Molecular characterization of myoplasmin-C1: a cytoskeletal component localized in the myoplasm of the ascidian egg, Development Genes and Evolution, vol.206, issue.1, pp.72-79, 1996.
DOI : 10.1007/s004270050032

W. Jeffery, Identification of proteins and mRNAs in isolated yellow crescents of ascidian eggs, J Embryol Exp Morphol, vol.89, pp.275-287, 1985.

T. Nishikata, I. Mita-miyazawa, T. Deno, and N. Satoh, Monoclonal antibodies against components of the myoplasm of eggs of the ascidian Ciona intestinalis partially block the development of muscle-specific acetylcholinesterase, Development, vol.100, pp.577-586, 1987.

W. Jeffery and S. Meier, A yellow crescent cytoskeletal domain in ascidian eggs and its role in early development, Developmental Biology, vol.96, issue.1, pp.125-143, 1983.
DOI : 10.1016/0012-1606(83)90317-2

W. Jeffery, 8 Development and Evolution of an Egg Cytoskeletal Domain in Ascidians, Curr Top Dev Biol, vol.31, pp.243-276, 1995.
DOI : 10.1016/S0070-2153(08)60230-6

N. Satoh, Developmental Biology of Ascidians, 1994.

A. Karabinos, A. Zimek, and K. Weber, The genome of the early chordate Ciona intestinalis encodes only five cytoplasmic intermediate filament proteins including a single type I and type II keratin and a unique IF???annexin fusion protein, Gene, vol.326, pp.123-129, 2004.
DOI : 10.1016/j.gene.2003.10.019

H. Nishida and K. Sawada, macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis, Nature, vol.110, issue.6821, pp.724-729, 2001.
DOI : 10.1016/0012-1606(85)90102-2

K. Sawada, Y. Fukushima, and H. Nishida, Macho-1 functions as transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi, Gene Expression Patterns, vol.5, issue.3, 2005.
DOI : 10.1016/j.modgep.2004.09.003

T. Nishikata, T. Hibino, and H. Nishida, The Centrosome-Attracting Body, Microtubule System, and Posterior Egg Cytoplasm Are Involved in Positioning of Cleavage Planes in the Ascidian Embryo, Developmental Biology, vol.209, issue.1, pp.72-85, 1999.
DOI : 10.1006/dbio.1999.9244

C. Sardet, H. Nishida, F. Prodon, and K. Sawada, Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex, Development, vol.130, issue.23, pp.5839-5849, 2003.
DOI : 10.1242/dev.00805

S. Patalano, G. Prulière, F. Prodon, A. Paix, and P. Dru, The aPKC???PAR-6???PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo, Journal of Cell Science, vol.122, issue.8, pp.1592-1603, 2006.
DOI : 10.1016/j.ydbio.2005.05.027

T. Negishi, T. Takada, N. Kawai, and H. Nishida, Localized PEM mRNA and Protein Are Involved in Cleavage-Plane Orientation and Unequal Cell Divisions in Ascidians, Current Biology, vol.17, issue.12, 2007.
DOI : 10.1016/j.cub.2007.05.047

URL : https://doi.org/10.1016/j.cub.2007.05.047

F. Prodon, L. Yamada, M. Shirae-kurabayashi, Y. Nakamura, and Y. Sasakura, Postplasmic/PEM RNAs: A class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos, Developmental Dynamics, vol.62, issue.7, pp.1698-1715, 2007.
DOI : 10.1101/SQB.1997.062.01.013

A. Paix, L. Yamada, P. Dru, H. Lecordier, and G. Pruliere, Cortical anchorages and cell type segregations of maternal postplasmic/PEM RNAs in ascidians, Developmental Biology, vol.336, issue.1, pp.96-111, 2009.
DOI : 10.1016/j.ydbio.2009.09.001

A. Paix, L. Nguyen, P. Sardet, and C. , Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER), Developmental Biology, vol.357, issue.1, pp.211-226, 2011.
DOI : 10.1016/j.ydbio.2011.06.019

T. Meedel, P. Chang, and H. Yasuo, Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF, Developmental Biology, vol.302, issue.1, pp.333-344, 2007.
DOI : 10.1016/j.ydbio.2006.09.043

A. Kubo, N. Suzuki, X. Yuan, K. Nakai, and N. Satoh, Genomic cis-regulatory networks in the early Ciona intestinalis embryo, Development, vol.137, issue.10, pp.1613-1623, 2010.
DOI : 10.1242/dev.046789

J. Kugler, S. Gazdoiu, I. Oda-ishii, Y. Passamaneck, and A. Erives, Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis, Journal of Cell Science, vol.123, issue.14, pp.2453-2463, 2010.
DOI : 10.1242/jcs.066910

N. Satoh, I. Araki, and Y. Satou, An intrinsic genetic program for autonomous differentiation of muscle cells in the ascidian embryo., Proceedings of the National Academy of Sciences, vol.93, issue.18, pp.9315-9321, 1996.
DOI : 10.1073/pnas.93.18.9315

T. Meedel, J. Lee, and J. Whittaker, Muscle Development and Lineage-Specific Expression of CiMDF, the MyoD-Family Gene of Ciona intestinalis, Developmental Biology, vol.241, issue.2, pp.238-246, 2001.
DOI : 10.1006/dbio.2001.0511

F. Prodon, J. Chenevert, and C. Sardet, Establishment of animal???vegetal polarity during maturation in ascidian oocytes, Developmental Biology, vol.290, issue.2, pp.297-311, 2006.
DOI : 10.1016/j.ydbio.2005.11.025

W. Bates and C. Bishop, Localization of constitutive heat shock proteins in developing ascidians, Development, Growth and Differentiation, vol.102, issue.3, pp.307-314, 1996.
DOI : 10.1016/B978-0-12-612983-0.50009-2

H. Ishii, S. Kunihiro, M. Tanaka, K. Hatano, and T. Nishikata, Cytosolic subunits of ATP synthase are localized to the cortical endoplasmic reticulum-rich domain of the ascidian egg myoplasm, Development, Growth & Differentiation, vol.122, issue.8, pp.753-66, 2012.
DOI : 10.1158/0008-5472.CAN-03-1754

C. Sardet, J. Speksnijder, M. Terasaki, and P. Chang, Polarity of the ascidian egg cortex before fertilization, Development, vol.115, pp.221-237, 1992.

C. Sardet, F. Prodon, R. Dumollard, P. Chang, and J. Chênevert, Structure and Function of the Egg Cortex from Oogenesis through Fertilization, Developmental Biology, vol.241, issue.1, pp.1-23, 2001.
DOI : 10.1006/dbio.2001.0474

M. Willingham, Conditional Epitopes: Is Your Antibody Always Specific?, Journal of Histochemistry & Cytochemistry, vol.27, issue.10, pp.1233-1236, 1999.
DOI : 10.1177/27.5.90071

URL : http://journals.sagepub.com/doi/pdf/10.1177/002215549904701002

M. Michel, T. Wieland, and G. Tsujimoto, How reliable are G-protein-coupled receptor antibodies?, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.374, issue.4, pp.385-388, 2009.
DOI : 10.1007/s00210-009-0395-y

URL : https://link.springer.com/content/pdf/10.1007%2Fs00210-009-0395-y.pdf

M. Nomura, A. Nakajima, and K. Inaba, Proteomic profiles of embryonic development in the ascidian Ciona intestinalis, Developmental Biology, vol.325, issue.2, pp.468-481, 2009.
DOI : 10.1016/j.ydbio.2008.10.038

T. Miya, K. Makabe, and N. Satoh, Expression of a Gene for Major Mitochondrial Protein, ADP/ATP Translocase, during Embryogenesis in the Ascidian Halocynthia roretzi. (Ascidian embryos/ADP/ATP translocase gene/maternal mRNA/mitochondria), Development, Growth and Differentiation, vol.102, issue.1, pp.39-48, 1994.
DOI : 10.1016/B978-0-12-612983-0.50009-2

B. Soltys and R. Gupta, Immunoelectron Microscopic Localization of the 60-kDa Heat Shock Chaperonin Protein (Hsp60) in Mammalian Cells, Experimental Cell Research, vol.222, issue.1, pp.16-27, 1996.
DOI : 10.1006/excr.1996.0003

G. Pfister, C. Stroh, H. Perschinka, M. Kind, and M. Knoflach, Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy, Journal of Cell Science, vol.118, issue.8, pp.1587-1594, 2005.
DOI : 10.1242/jcs.02292

D. Chandra, G. Choy, and D. Tang, Cytosolic Accumulation of HSP60 during Apoptosis with or without Apparent Mitochondrial Release, Journal of Biological Chemistry, vol.326, issue.43, 2007.
DOI : 10.1074/jbc.M311388200

F. Cappello, C. De-macario, E. Marasà, L. Zummo, G. Macario et al., Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy, Cancer Biology & Therapy, vol.7, issue.6, pp.801-809, 2008.
DOI : 10.4161/cbt.7.6.6281

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.7.6.6281?needAccess=true

S. Ohashi, M. Atsumi, and S. Kobayashi, HSP60 interacts with YB-1 and affects its polysome association and subcellular localization, Biochemical and Biophysical Research Communications, vol.385, issue.4, 2009.
DOI : 10.1016/j.bbrc.2009.05.094

R. Stetler, Y. Gan, W. Zhang, A. Liou, and Y. Gao, Heat shock proteins: Cellular and molecular mechanisms in the central nervous system, Progress in Neurobiology, vol.92, issue.2, pp.184-211, 2010.
DOI : 10.1016/j.pneurobio.2010.05.002

Y. Goh, C. Yap, B. Huang, A. Cronshaw, and B. Leung, Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis, Cellular and Molecular Life Sciences, vol.209, issue.Pt 1, pp.1581-1592, 2011.
DOI : 10.1002/jcp.20715

K. Tanaka, K. Matsumoto, M. Tsujimoto, and T. Nishikata, CiYB1 is a major component of storage mRNPs in ascidian oocytes: implications in translational regulation of localized mRNAs, Developmental Biology, vol.272, issue.1, 2004.
DOI : 10.1016/j.ydbio.2004.04.032

M. Mirande, L. Corre, D. Louvard, D. Reggio, H. Pailliez et al., Association of an aminoacyl-tRNA synthetase complex and of phenylalanyl-tRNA synthetase with the cytoskeletal framework fraction from mammalian cells, Experimental Cell Research, vol.156, issue.1, pp.91-102, 1985.
DOI : 10.1016/0014-4827(85)90264-2

M. Melan and G. Sluder, Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy, J Cell Sci, vol.101, pp.731-743, 1992.

A. Hughes and L. Jones, Huntingtin localisation studies - a technical review, PLoS Currents, vol.3, 2011.
DOI : 10.1371/currents.RRN1211

URL : https://doi.org/10.1371/currents.rrn1211