G. Martino, R. Franklin, B. Van-evercooren, A. Kerr, and D. , Stem cell transplantation in multiple sclerosis: current status and future prospects, Nature Reviews Neurology, vol.8, issue.5, pp.247-255, 2010.
DOI : 10.1017/S0317167100047351

K. Chu, M. Kim, K. Jung, D. Jeon, and S. Lee, Human neural stem cell transplantation reduces spontaneous recurrent seizures following pilocarpine-induced status epilepticus in adult rats, Brain Research, vol.1023, issue.2, pp.213-221, 2004.
DOI : 10.1016/j.brainres.2004.07.045

S. Lee, K. Chu, J. Park, K. Lee, and L. Kang, Intravenous administration of human neural stem cells induces functional recovery in Huntington's disease rat model, Neuroscience Research, vol.52, issue.3, pp.243-249, 2005.
DOI : 10.1016/j.neures.2005.03.016

S. Lee, K. Chu, K. Jung, S. Kim, and D. Kim, Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke, Brain, vol.131, issue.3, pp.616-629, 2008.
DOI : 10.1093/brain/awm306

H. Takeuchi, A. Natsume, T. Wakabayashi, C. Aoshima, and S. Shimato, Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner, Neuroscience Letters, vol.426, issue.2, pp.69-74, 2007.
DOI : 10.1016/j.neulet.2007.08.048

S. Pluchino, A. Quattrini, E. Brambilla, A. Gritti, and G. Salani, Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis, Nature, vol.156, issue.6933, pp.688-694, 2003.
DOI : 10.4049/jimmunol.167.3.1821

O. Einstein, N. Fainstein, I. Vaknin, R. Mizrachi-kol, and E. Reihartz, Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppression, Annals of Neurology, vol.20, issue.pt 1, pp.209-218, 2007.
DOI : 10.4049/jimmunol.169.10.5415

S. Pluchino and G. Martino, The therapeutic use of stem cells for myelin repair in autoimmune demyelinating disorders, Journal of the Neurological Sciences, vol.233, issue.1-2, pp.117-119, 2005.
DOI : 10.1016/j.jns.2005.03.026

M. Aharonowiz, O. Einstein, N. Fainstein, H. Lassmann, and B. Reubinoff, Neuroprotective Effect of Transplanted Human Embryonic Stem Cell-Derived Neural Precursors in an Animal Model of Multiple Sclerosis, PLoS ONE, vol.10, issue.9, pp.3145-57430, 2008.
DOI : 10.1371/journal.pone.0003145.t002

S. Jeong, K. Chu, K. Jung, S. Kim, and M. Kim, Human Neural Stem Cell Transplantation Promotes Functional Recovery in Rats With Experimental Intracerebral Hemorrhage, Stroke, vol.34, issue.9, pp.2258-2263, 2003.
DOI : 10.1161/01.STR.0000083698.20199.1F

B. Kim, D. Hwang, S. Lee, E. Kim, and S. Kim, Stem Cell-Based Cell Therapy for Spinal Cord Injury, Cell Transplantation, vol.416, issue.4, pp.355-364, 2007.
DOI : 10.1038/nature729

S. Pluchino, L. Zanotti, B. Rossi, E. Brambilla, and L. Ottoboni, Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism, Nature, vol.436, issue.7048, pp.266-271, 2005.
DOI : 10.1038/nature03889

S. Pluchino, L. Zanotti, E. Brambilla, P. Rovere-querini, and A. Capobianco, Immune Regulatory Neural Stem/Precursor Cells Protect from Central Nervous System Autoimmunity by Restraining Dendritic Cell Function, PLoS ONE, vol.4, issue.6, p.5959, 2009.
DOI : 10.1371/journal.pone.0005959.s008

URL : https://doi.org/10.1371/journal.pone.0005959

G. Weber, S. Ashkar, M. Glimcher, and H. Cantor, Receptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1), Science, vol.271, issue.5248, pp.509-512, 1996.
DOI : 10.1126/science.271.5248.509

S. Jalkanen and M. Jalkanen, Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin, The Journal of Cell Biology, vol.116, issue.3, pp.817-825, 1992.
DOI : 10.1083/jcb.116.3.817

K. Bennett, B. Modrell, B. Greenfield, A. Bartolazzi, and I. Stamenkovic, Regulation of CD44 binding to hyaluronan by glycosylation of variably spliced exons, The Journal of Cell Biology, vol.131, issue.6, pp.1623-1633, 1995.
DOI : 10.1083/jcb.131.6.1623

H. Degrendele, P. Estess, and M. Siegelman, Requirement for CD44 in Activated T Cell Extravasation into an Inflammatory Site, Science, vol.278, issue.5338, pp.672-675, 1997.
DOI : 10.1126/science.278.5338.672

R. Stoop, I. Gal, T. Glant, J. Mcneish, and K. Mikecz, Trafficking of CD44-deficient murine lymphocytes under normal and inflammatory conditions, European Journal of Immunology, vol.32, issue.9, pp.2532-2542, 2002.
DOI : 10.1002/1521-4141(200209)32:9<2532::AID-IMMU2532>3.0.CO;2-A

S. Brocke, C. Piercy, L. Steinman, I. Weissman, and T. Veromaa, Antibodies to CD44 and integrin ??4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.6896-6901, 1999.
DOI : 10.1172/JCI4235

URL : http://www.pnas.org/content/96/12/6896.full.pdf

A. Nandi, P. Estess, and M. Siegelman, Bimolecular Complex between Rolling and Firm Adhesion Receptors Required for Cell Arrest, Immunity, vol.20, issue.4, pp.455-465, 2004.
DOI : 10.1016/S1074-7613(04)00077-9

URL : https://doi.org/10.1016/s1074-7613(04)00077-9

M. Siegelman, D. Stanescu, and P. Estess, The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion, Journal of Clinical Investigation, vol.105, issue.5, pp.683-691, 2000.
DOI : 10.1172/JCI8692

H. Wang, Y. Hung, C. Su, S. Peng, and Y. Guo, CD44 Cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (??L??2) and VLA-4 (??4??1), Experimental Cell Research, vol.304, issue.1, pp.116-126, 2005.
DOI : 10.1016/j.yexcr.2004.10.015

J. Draffin, S. Mcfarlane, A. Hill, P. Johnston, and D. Waugh, CD44 Potentiates the Adherence of Metastatic Prostate and Breast Cancer Cells to Bone Marrow Endothelial Cells, Cancer Research, vol.64, issue.16, pp.5702-5711, 2004.
DOI : 10.1158/0008-5472.CAN-04-0389

S. Mine, T. Fujisaki, C. Kawahara, T. Tabata, and T. Iida, Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44, Experimental Cell Research, vol.288, issue.1, pp.189-197, 2003.
DOI : 10.1016/S0014-4827(03)00184-8

A. Pusch, A. Boeckenhoff, T. Glaser, T. Kaminski, and G. Kirfel, CD44 and hyaluronan promote invasive growth of B35 neuroblastoma cells into the brain, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1803, issue.2, pp.261-274, 2010.
DOI : 10.1016/j.bbamcr.2009.12.003

L. Bourguignon, K. Peyrollier, E. Gilad, and A. Brightman, Hyaluronan-CD44 Interaction with Neural Wiskott-Aldrich Syndrome Protein (N-WASP) Promotes Actin Polymerization and ErbB2 Activation Leading to ??-Catenin Nuclear Translocation, Transcriptional Up-regulation, and Cell Migration in Ovarian Tumor Cells, Journal of Biological Chemistry, vol.1424, issue.2, pp.1265-1280, 2007.
DOI : 10.1038/nrc904

C. Rampon, N. Weiss, C. Deboux, N. Chaverot, and F. Miller, Molecular Mechanism of Systemic Delivery of Neural Precursor Cells to the Brain: Assembly of Brain Endothelial Apical Cups and Control of Transmigration by CD44, Stem Cells, vol.99, issue.7, pp.1673-1682, 2008.
DOI : 10.4049/jimmunol.165.6.3375

M. Laschinger and B. Engelhardt, Interaction of ??4-integrin with VCAM-1 is involved in adhesion of encephalitogenic T cell blasts to brain endothelium but not in their transendothelial migration in vitro, Journal of Neuroimmunology, vol.102, issue.1, pp.32-43, 2000.
DOI : 10.1016/S0165-5728(99)00156-3

Y. Liu, S. Han, Y. Wu, T. Tuohy, and H. Xue, CD44 expression identifies astrocyte-restricted precursor cells, Developmental Biology, vol.276, issue.1, pp.31-46, 2004.
DOI : 10.1016/j.ydbio.2004.08.018

URL : https://doi.org/10.1016/j.ydbio.2004.08.018

J. H. Piao, Y. Wanf, and I. Duncan, CD44 is required for the migration of transplanted oligodendrocyte progenitor cells to focal inflammatory demyelinating lesions in the spinal cord, Glia, vol.24, issue.3, 2012.
DOI : 10.1634/stemcells.2005-0186