C. Smith and R. Fenton, Genomic Organization of the Mammalian SLC14a2 Urea Transporter Genes, Journal of Membrane Biology, vol.25, issue.2, pp.109-117, 2006.
DOI : 10.1152/ajpcell.00331.2001

R. Timmer, J. Klein, S. Bagnasco, J. Doran, and J. Verlander, Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues, Am J Physiol Cell Physiol, vol.281, pp.1318-1325, 2001.

U. Phenotype-in-bladder-in, P. Mice, B. One-|-www-yang, L. Bankir, A. Gillespie et al., plosone.org 3 Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B, J Biol Chem, vol.277, pp.10633-10637, 2002.

B. Yang and L. Bankir, Urea and urine concentrating ability: new insights from studies in mice, AJP: Renal Physiology, vol.288, issue.5, pp.881-896, 2005.
DOI : 10.1152/ajprenal.00367.2004

URL : http://ajprenal.physiology.org/content/ajprenal/288/5/F881.full.pdf

L. Guo, D. Zhao, Y. Song, Y. Meng, and H. Zhao, Reduced urea flux across the blood-testis barrier and early maturation in the male reproductive system in UT-B-null mice, AJP: Cell Physiology, vol.293, issue.1, pp.305-312, 2007.
DOI : 10.1152/ajpcell.00608.2006

Y. Meng, C. Zhao, X. Zhang, H. Zhao, and L. Guo, Surface electrocardiogram and action potential in mice lacking urea transporter UT-B, Science in China Series C: Life Sciences, vol.14, issue.4, pp.474-478, 2009.
DOI : 10.1159/000187519

X. Li, J. Ran, H. Zhou, T. Lei, and L. Zhou, Mice Lacking Urea Transporter UT-B Display Depression-Like Behavior, Journal of Molecular Neuroscience, vol.31, issue.2, pp.362-372, 2012.
DOI : 10.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J

D. Spector, Y. Q. Wade, and J. , High urea and creatinine concentrations and urea transporter B in mammalian urinary tract tissues, AJP: Renal Physiology, vol.292, issue.1, pp.467-474, 2007.
DOI : 10.1152/ajprenal.00181.2006

URL : http://ajprenal.physiology.org/content/ajprenal/292/1/F467.full.pdf

T. Rafnar, S. Vermeulen, P. Sulem, G. Thorleifsson, and K. Aben, European genome-wide association study identifies SLC14A1 as a new urinary bladder cancer susceptibility gene, Human Molecular Genetics, vol.20, issue.21, pp.4268-4281, 2011.
DOI : 10.1093/hmg/ddr303

URL : https://academic.oup.com/hmg/article-pdf/20/21/4268/17252644/ddr303.pdf

M. Garcia-closas, Y. Ye, N. Rothman, J. Figueroa, and N. Malats, A genome-wide association study of bladder cancer identifies a new susceptibility locus within SLC14A1, a urea transporter gene on chromosome 18q12.3, Human Molecular Genetics, vol.20, issue.21, pp.4282-4289, 2011.
DOI : 10.1093/hmg/ddr342

K. Pahan, J. Raymond, and I. Singh, Glial Cells, Journal of Biological Chemistry, vol.158, issue.11, pp.7528-7536, 1999.
DOI : 10.1074/jbc.272.34.21281

D. Spector, Y. Q. Liu, J. Wade, and J. , Expression, localization, and regulation of urea transporter B in rat urothelia, AJP: Renal Physiology, vol.287, issue.1, pp.102-108, 2004.
DOI : 10.1152/ajprenal.00442.2003

A. Bheda, A. Gullapalli, M. Caplow, J. Pagano, and J. Shackelford, Ubiquitin editing enzyme UCH L1 and microtubule dynamics: Implication in mitosis, Cell Cycle, vol.9, issue.5, pp.980-994, 2010.
DOI : 10.4161/cc.9.5.10934

URL : http://www.tandfonline.com/doi/pdf/10.4161/cc.9.5.10934?needAccess=true

S. Hussain, O. Foreman, S. Perkins, T. Witzig, and R. Miles, The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling, Leukemia, vol.33, issue.9, pp.1641-1655, 2010.
DOI : 10.4161/cc.5.6.2561

S. Prabhakar, G. Zeballos, M. Montoya-zavala, and C. Leonard, Urea inhibits inducible nitric oxide synthase in macrophage cell line, Am J Physiol, vol.273, pp.1882-1888, 1997.

Z. Lygerou and P. Nurse, Cell cycle. License withheld?geminin blocks DNA replication, Science, vol.290, pp.2271-2273, 2000.

S. Forsburg, Eukaryotic MCM Proteins: Beyond Replication Initiation, Microbiology and Molecular Biology Reviews, vol.68, issue.1, pp.109-131, 2004.
DOI : 10.1128/MMBR.68.1.109-131.2004

URL : http://mmbr.asm.org/content/68/1/109.full.pdf

M. Gonzalez, S. Pinder, G. Callagy, S. Vowler, and L. Morris, Minichromosome Maintenance Protein 2 Is a Strong Independent Prognostic Marker in Breast Cancer, Journal of Clinical Oncology, vol.21, issue.23, pp.4306-4313, 2003.
DOI : 10.1200/JCO.2003.04.121

C. Giaginis, M. Georgiadou, K. Dimakopoulou, G. Tsourouflis, and E. Gatzidou, Clinical Significance of MCM-2 and MCM-5 Expression in Colon Cancer: Association with Clinicopathological Parameters and Tumor Proliferative Capacity, Digestive Diseases and Sciences, vol.83, issue.2, pp.282-291, 2009.
DOI : 10.1093/jnci/94.14.1071

D. Kunnev, M. Rusiniak, A. Kudla, A. Freeland, and G. Cady, DNA damage response and tumorigenesis in Mcm2-deficient mice, Oncogene, vol.8, issue.25, pp.3630-3638, 2010.
DOI : 10.1146/ANNUREV.BIOCHEM.68.1.649

URL : http://www.nature.com/onc/journal/v29/n25/pdf/onc2010125a.pdf

A. Levine, p53, the Cellular Gatekeeper for Growth and Division, Cell, vol.88, issue.3, pp.323-331, 1997.
DOI : 10.1016/S0092-8674(00)81871-1

Z. Feng, L. Liu, C. Zhang, T. Zheng, and J. Wang, Chronic restraint stress attenuates p53 function and promotes tumorigenesis, Proceedings of the National Academy of Sciences, vol.23, issue.28, pp.7013-7018, 2012.
DOI : 10.1200/JCO.2005.10.015

URL : http://www.pnas.org/content/109/18/7013.full.pdf

N. Dmitrieva, D. Kultz, L. Michea, J. Ferraris, and M. Burg, Protection of Renal Inner Medullary Epithelial Cells from Apoptosis by Hypertonic Stress-induced p53 Activation, Journal of Biological Chemistry, vol.67, issue.24, pp.18243-18247, 2000.
DOI : 10.1046/j.1440-1681.1999.02991.x

H. Kim, Y. Kim, S. Lim, Y. Nam, and J. Jeong, Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis, Oncogene, vol.5, issue.1, pp.117-127, 2009.
DOI : 10.4161/cc.5.6.2561

H. Shen, M. Sikorska, J. Leblanc, P. Walker, and Q. Liu, Oxidative stress regulated expression of Ubiquitin Carboxyl-terminal Hydrolase-L1: Role in cell survival, Apoptosis, vol.18, issue.6, pp.1049-1059, 2006.
DOI : 10.4161/cc.2.5.461

Y. Tan, H. Zhou, Z. Wang, and S. Chen, Endoplasmic reticulum stress contributes to the cell death induced by UCH-L1 inhibitor, Molecular and Cellular Biochemistry, vol.78, issue.1-2, pp.109-115, 2008.
DOI : 10.1007/s11010-008-9862-x

D. Zhao, N. Sonawane, M. Levin, and Y. B. , Comparative transport efficiencies of urea analogues through urea transporter UT-B, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.7, pp.1815-1821, 2007.
DOI : 10.1016/j.bbamem.2007.04.010

URL : https://doi.org/10.1016/j.bbamem.2007.04.010

L. Bankir, K. Chen, and Y. B. , Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability, AJP: Renal Physiology, vol.286, issue.1, 2004.
DOI : 10.1152/ajprenal.00205.2003

A. Bheda, J. Shackelford, and J. Pagano, Expression and Functional Studies of Ubiquitin C-Terminal Hydrolase L1 Regulated Genes, PLoS ONE, vol.79, issue.8, p.6764, 2009.
DOI : 10.1371/journal.pone.0006764.s005

Q. Zou, S. Habermann-rottinghaus, and K. Murphy, Urea effects on protein stability: Hydrogen bonding and the hydrophobic effect, Proteins: Structure, Function, and Genetics, vol.92, issue.2, pp.107-115, 1998.
DOI : 10.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J

R. Singh, A. Dar, T. Ahmad, S. Moosavi-movahedi, A. Ahmad et al., A new method for determining the constant-pressure heat capacity change associated with the protein denaturation induced by guanidinium chloride (or urea), Biophysical Chemistry, vol.133, issue.1-3, 2008.
DOI : 10.1016/j.bpc.2007.12.006

L. Kraus, A. Kraus, and . Jr, Carbamoylation of amino acids and proteins in uremia, Kidney Int, vol.78, pp.102-107, 2001.

L. Michea, D. Ferguson, E. Peters, P. Andrews, and M. Kirby, Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells, Am J Physiol Renal Physiol, vol.278, pp.209-218, 2000.

Z. Zhang, N. Dmitrieva, J. Park, R. Levine, and M. Burg, From The Cover: High urea and NaCl carbonylate proteins in renal cells in culture and in vivo, and high urea causes 8-oxoguanine lesions in their DNA, Proceedings of the National Academy of Sciences, vol.248, issue.2, pp.9491-9496, 2004.
DOI : 10.1016/0003-9861(91)90425-I

W. Durante, F. Johnson, and R. Johnson, ARGINASE: A CRITICAL REGULATOR OF NITRIC OXIDE SYNTHESIS AND VASCULAR FUNCTION, Clinical and Experimental Pharmacology and Physiology, vol.130, issue.9, pp.906-911, 2007.
DOI : 10.1161/01.ATV.0000195791.83380.4c

C. Chang, J. Liao, and L. Kuo, Arginase modulates nitric oxide production in activated macrophages, Am J Physiol, vol.274, pp.342-348, 1998.

K. Kawano, H. Masuda, M. Yano, K. Kihara, and A. Sugimoto, Altered Nitric Oxide Synthase, Arginase and Ornithine Decarboxylase Activities, and Polyamine Synthesis in Response to Ischemia of the Rabbit Detrusor, The Journal of Urology, vol.176, issue.1, pp.387-393, 2006.
DOI : 10.1016/S0022-5347(06)00515-5

S. Nikolaeva, V. Bakhtereva, E. Fok, E. Lavrova, and R. Parnova, Arginase activity in frog urinary bladder epithelial cells and its involvement in regulation of nitric oxide production, Journal of Evolutionary Biochemistry and Physiology, vol.44, issue.3, pp.234-240, 2008.
DOI : 10.1134/S0022093008030022

H. Li, C. Meininger, J. Hawker, . Jr, T. Haynes et al., Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells, Am J Physiol Endocrinol Metab, vol.280, pp.75-82, 2001.

Y. Tratsiakovich, T. Gonon, A. Krook, A. Yang, J. Shemyakin et al., Arginase inhibition reduces infarct size via nitric oxide, protein kinase C epsilon and mitochondrial ATP-dependent K+ channels, European Journal of Pharmacology, vol.712, issue.1-3, 2013.
DOI : 10.1016/j.ejphar.2013.04.044

H. El-bassossy, R. El-fawal, and A. Fahmy, Arginase inhibition alleviates hypertension associated with diabetes: Effect on endothelial dependent relaxation and NO production, Vascular Pharmacology, vol.57, issue.5-6, pp.194-200, 2012.
DOI : 10.1016/j.vph.2012.01.001

C. Jenkinson, W. Grody, and S. Cederbaum, Comparative properties of arginases, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, vol.114, issue.1, pp.107-132, 1996.
DOI : 10.1016/0305-0491(95)02138-8

R. Snyder, Polyamine depletion is associated with altered chromatin structure in HeLa cells, Biochemical Journal, vol.260, issue.3, pp.697-704, 1989.
DOI : 10.1042/bj2600697

URL : http://www.biochemj.org/content/ppbiochemj/260/3/697.full.pdf

A. Khan, Y. Mei, and T. Wilson, A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen., Proceedings of the National Academy of Sciences, vol.89, issue.23, pp.11426-11427, 1992.
DOI : 10.1073/pnas.89.23.11426

A. Khan, D. Mascio, P. Medeiros, M. Wilson, and T. , Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen., Proceedings of the National Academy of Sciences, vol.89, issue.23, pp.11428-11430, 1992.
DOI : 10.1073/pnas.89.23.11428

S. Luperchio, S. Tamir, and S. Tannenbaum, No-induced oxidative stress and glutathione metabolism in rodent and human cells, Free Radical Biology and Medicine, vol.21, issue.4, pp.513-519, 1996.
DOI : 10.1016/0891-5849(96)00219-5

D. Tsikas, R. Boger, J. Sandmann, S. Bode-boger, and J. Frolich, -arginine paradox, FEBS Letters, vol.361, issue.1-2, pp.1-3, 2000.
DOI : 10.1161/01.CIR.98.18.1842

URL : https://hal.archives-ouvertes.fr/hal-01535301

K. Stanley, L. Chicoine, T. Young, K. Reber, and C. Lyons, Gene transfer with inducible nitric oxide synthase decreases production of urea by arginase in pulmonary arterial endothelial cells, AJP: Lung Cellular and Molecular Physiology, vol.290, issue.2, pp.298-306, 2006.
DOI : 10.1152/ajplung.00140.2005

P. Bauer, G. Buga, J. Fukuto, A. Pegg, and L. Ignarro, -Nitrosylation of Cysteine 360 in the Active Site of the Enzyme, Journal of Biological Chemistry, vol.284, issue.37, pp.34458-34464, 2001.
DOI : 10.1038/35068596

URL : https://hal.archives-ouvertes.fr/in2p3-00011470

L. Ignarro, G. Buga, L. Wei, P. Bauer, and G. Wu, Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation, Proceedings of the National Academy of Sciences, vol.165, issue.9, pp.4202-4208, 2001.
DOI : 10.4049/jimmunol.165.9.5245