Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field

Abstract : Background: Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Results: Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120–125 W/gFe. Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Conclusions:Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor
Type de document :
Article dans une revue
Journal of Nanobiotechnology, BioMed Central, 2017, 15 (1), pp.74. 〈10.1186/s12951-017-0293-2〉
Liste complète des métadonnées

Littérature citée [60 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01620248
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : vendredi 20 octobre 2017 - 12:09:40
Dernière modification le : jeudi 11 janvier 2018 - 06:25:48

Fichier

document.pdf
Publication financée par une institution

Identifiants

Collections

Citation

Yasmina Hamdous, Imène Chebbi, Chalani Mandawala, Raphael Le Fèvre, François Guyot, et al.. Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. Journal of Nanobiotechnology, BioMed Central, 2017, 15 (1), pp.74. 〈10.1186/s12951-017-0293-2〉. 〈hal-01620248〉

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

14