C. Garzon-coral, H. A. Fantana, and J. Howard, A force-generating machinery maintains the spindle at the cell center during mitosis, Science, vol.352, pp.1124-1127, 2016.

D. M. Kern, P. K. Nicholls, D. C. Page, and I. M. Cheeseman, A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends, J. Cell Biol, vol.213, pp.315-328, 2016.

N. Minc and M. Piel, Predicting division plane position and orientation, Trends Cell. Biol, vol.22, pp.193-200, 2012.

C. R. Cowan and A. A. Hyman, Asymmetric cell division in C. elegans: cortical polarity and spindle positioning, Annu. Rev. Cell Dev. Biol, vol.20, pp.427-453, 2004.

S. Kotak and P. Gönczy, Mechanisms of spindle positioning: cortical force generators in the limelight, Curr. Opin. Cell Biol, vol.25, pp.741-748, 2013.

N. Homma, Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension, Cell, vol.114, pp.229-239, 2003.

M. Maor-nof, Axonal pruning is actively regulated by the microtubuledestabilizing protein kinesin superfamily protein 2A, Cell Rep, vol.3, pp.971-977, 2013.

K. H. Siller and C. Q. Doe, Spindle orientation during asymmetric cell division, Nat. Cell Biol, vol.11, pp.365-374, 2009.

G. M. Wessel, The biology of the germ line in echinoderms, Mol. Reprod. Dev, vol.81, pp.679-711, 2014.

M. Galli and S. Van-den-heuvel, Determination of the cleavage plane in early C. elegans embryos, Annu. Rev. Genet, vol.42, pp.389-411, 2008.

S. W. Grill, P. Gönczy, E. H. Stelzer, and A. A. Hyman, Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo, Nature, vol.409, pp.630-633, 2001.

J. C. Labbé, P. S. Maddox, E. D. Salmon, and B. Goldstein, PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans, Curr. Biol, vol.13, pp.707-714, 2003.

C. Kozlowski, M. Srayko, and F. Nedelec, Cortical microtubule contacts position the spindle in C. elegans embryos, Cell, vol.129, pp.499-510, 2007.

N. Minc, D. Burgess, and F. Chang, Influence of cell geometry on division-plane positioning, Cell, vol.144, pp.414-426, 2011.

L. Laan, Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters, Cell, vol.148, pp.502-514, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00994472

C. J. Lawrence, A standardized kinesin nomenclature, J. Cell Biol, vol.167, pp.19-22, 2004.

L. Wordeman, M. Wagenbach, and G. Von-dassow, MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover, J. Cell Biol, vol.179, pp.869-879, 2007.

S. M. O'rourke, S. N. Christensen, and B. Bowerman, Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex, Nat. Cell Biol, vol.12, pp.1235-1241, 2010.

P. Gönczy, Mechanisms of asymmetric cell division: flies and worms pave the way, Nat. Rev. Mol. Cell Biol, vol.9, pp.355-366, 2008.

M. Galli, aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division, Nat. Cell Biol, vol.13, pp.1132-1138, 2011.

M. Gotta, Y. Dong, Y. K. Peterson, S. M. Lanier, and J. Ahringer, Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo, Curr. Biol, vol.13, pp.1029-1037, 2003.

M. Tsou, A. Hayashi, and L. S. Rose, LET-99 opposes Galpha/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/ SRC-1 signaling, Development, vol.130, pp.5717-5730, 2003.

K. Colombo, Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos, Science, vol.300, pp.1957-1961, 2003.

C. Couwenbergs, Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans, J. Cell Biol, vol.179, pp.15-22, 2007.

A. F. Severson and B. Bowerman, Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans, J. Cell Biol, vol.161, pp.21-26, 2003.

E. S. Collins, S. K. Balchand, J. L. Faraci, P. Wadsworth, and W. Lee, Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase, Mol. Biol. Cell, vol.23, pp.3380-3390, 2012.

T. Kiyomitsu and I. M. Cheeseman, Cortical dynein and asymmetric membrane elongation coordinately position the spindle in anaphase, Cell, vol.154, pp.391-402, 2013.

T. Nguyen-ngoc, K. Afshar, and P. Gönczy, Coupling of cortical dynein and G? proteins mediates spindle positioning in Caenorhabditis elegans, Nat. Cell Biol, vol.9, pp.1294-1302, 2007.

J. S. Rabinowitz and J. D. Lambert, Spiralian quartet developmental potential is regulated by specific localization elements that mediate asymmetric RNA segregation, Development, vol.137, pp.4039-4049, 2010.

J. D. Lambert, Developmental patterns in spiralian embryos, Curr. Biol, vol.20, pp.72-77, 2010.

J. Holy and G. Schatten, Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos, J. Cell Sci, vol.98, pp.423-431, 1991.

T. E. Schroeder, Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions, Dev. Biol, vol.124, pp.9-22, 1987.

T. Hibino, T. Nishikata, and H. Nishida, Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo, Dev. Growth Differ, vol.40, pp.85-95, 1998.

F. Prodon, Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors, Development, vol.137, 2010.

T. Nishikata, T. Hibino, and H. Nishida, The centrosome-attracting body, microtubule system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo, Dev. Biol, vol.209, pp.72-85, 1999.

S. Patalano, The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo, J. Cell Sci, vol.119, pp.1592-1603, 2006.

A. Paix, P. N. Le-nguyen, and C. Sardet, Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER), Dev. Biol, vol.357, pp.211-226, 2011.

A. Mcdougall, Centrosomes and spindles in ascidian embryos and eggs, Methods Cell Biol, vol.129, pp.317-339, 2015.

X. Ren and D. A. Weisblat, Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta, Dev. Biol, vol.292, pp.103-115, 2006.

A. Paix, J. Chenevert, and C. Sardet, Localization and anchorage of maternal mRNAs to cortical structures of ascidian eggs and embryos using high resolution in situ hybridization, Methods Mol. . Biol, vol.714, pp.49-70, 2011.

N. Hirokawa and R. Takemura, Kinesin superfamily proteins and their various functions and dynamics, Exp. Cell Res, vol.301, pp.50-59, 2004.

N. Hirokawa and Y. Tanaka, Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases, Exp. Cell Res, vol.334, pp.16-25, 2015.

S. C. Ems-mcclung, K. M. Hertzer, X. Zhang, M. W. Miller, and C. E. Walczak, The interplay of the N-and C-terminal domains of MCAK control microtubule depolymerization activity and spindle assembly, Mol. Biol. Cell, vol.18, pp.282-294, 2007.

M. Levasseur and A. Mcdougall, Sperm-induced calcium oscillations at fertilisation in ascidians are controlled by cyclin B1-dependent kinase activity, Development, vol.127, pp.631-641, 2000.

R. Dumollard, Mos limits the number of meiotic divisions in urochordate eggs, Development, vol.138, pp.885-895, 2011.

C. Sardet, Embryological methods in ascidians: the Villefranche-sur-Mer protocols, Methods Mol. Biol, vol.770, pp.365-400, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02115495

M. Wühr, E. S. Tan, S. K. Parker, H. W. Detrich, and T. J. Mitchison, A model for cleavage plane determination in early amphibian and fish embryos, Curr. Biol, vol.20, pp.2040-2045, 2010.

Y. Noda, Phosphatidylinositol 4-phosphate 5-kinase alpha (PIPK?) regulates neuronal microtubule depolymerase kinesin, KIF2A and suppresses elongation of axon branches, Proc. Natl Acad. Sci. USA, vol.109, pp.1725-1730, 2012.

D. W. Adams and J. Errington, Bacterial cell division: assembly, maintenance and disassembly of the Z ring, Nat. Rev. Microbiol, vol.7, pp.642-653, 2009.

B. B. Aldridge, Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility, Science, vol.335, pp.100-104, 2012.

J. L. Carminati and T. Stearns, Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex, J. Cell Biol, vol.138, pp.629-641, 1997.

M. Q. Martindale and J. Q. Henry, Intracellular fate mapping in a basal metazoan, the ctenophore Mnemiopsis leidyi, reveals the origins of mesoderm and the existence of indeterminate cell lineages, Dev. Biol, vol.214, pp.243-257, 1999.

D. Carré, C. Djediat, and C. Sardet, Formation of a large Vasa-positive germ granule and its inheritance by germ cells in the enigmatic Chaetognaths, Development, vol.129, pp.661-670, 2002.

G. Prulière, J. Cosson, S. Chevalier, C. Sardet, and J. Chenevert, Atypical protein kinase C controls sea urchin ciliogenesis, Mol. Biol. Cell, vol.22, pp.2042-2053, 2011.

R. Luo, Direct functional interaction of the kinesin-13 family member kinesin-like protein 2A (Kif2A) and Arf GAP with GTP-binding protein-like, ankyrin repeats and PH domains 1 (AGAP1), J. Biol. Chem, vol.291, p.25761, 2016.

T. Negishi, T. Takada, N. Kawai, and H. Nishida, Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians, Curr. Biol, vol.17, pp.1014-1025, 2007.

Y. Oguchi, S. Uchimura, T. Ohki, S. V. Mikhailenko, and S. Ishiwata, The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends, Nat. Cell Biol, vol.13, pp.846-852, 2011.

R. W. Nipper, K. H. Siller, N. R. Smith, C. Q. Doe, and K. E. Prehoda, Galphai generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts, Proc. Natl Acad. Sci. USA, vol.104, pp.14306-14311, 2007.

K. H. Siller, C. Cabernard, and C. Q. Doe, The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts, Nat. Cell Biol, vol.8, pp.594-600, 2006.

C. Cabernard, K. E. Prehoda, and C. Q. Doe, A spindle-independent cleavage furrow positioning pathway, Nature, vol.467, pp.91-94, 2010.

S. Redemann, Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos, PLoS ONE, vol.5, p.12301, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01497094

P. Gönczy, zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly, Dev. Cell, vol.1, pp.363-375, 2001.

N. J. Ganem and D. A. Compton, The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK, J. Cell Biol, vol.166, pp.473-478, 2004.

A. Mcdougall, K. W. Lee, .. Dumollard, and R. , Microinjection and 4D fluorescence imaging in the eggs and embryos of the ascidian Phallusia mammillata, Methods Mol. Biol, vol.1128, pp.175-185, 2014.