A. Björklund and T. Hökfelt, Classical neurotransmitters in the CNS Handbook of Chemical Neuroanatomy Part I, pp.1-463, 1984.

A. Björklund and T. Hökfelt, GABA and neuropeptides in the CNS Handbook of Chemical Neuroanatomy, pp.1-638, 1985.

D. Simmons and L. Swanson, High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas, Neuroscience Letters, vol.438, issue.1, pp.85-89, 2008.
DOI : 10.1016/j.neulet.2008.04.057

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478755/pdf

D. Richardson and J. Lichtman, Clarifying Tissue Clearing, Cell, vol.162, issue.2, pp.246-257, 2015.
DOI : 10.1016/j.cell.2015.06.067

URL : https://doi.org/10.1016/j.cell.2015.06.067

M. Dobosz, V. Ntziachristos, W. Scheuer, and S. Strobel, Multispectral Fluorescence Ultramicroscopy: Three-Dimensional Visualization and Automatic Quantification of Tumor Morphology, Drug Penetration, and Antiangiogenic Treatment Response, Neoplasia, vol.16, issue.1, pp.1-13, 2014.
DOI : 10.1593/neo.131848

H. Dodt, U. Leischner, and A. Schierloh, Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain, Nature Methods, vol.35, issue.4, pp.331-336, 2007.
DOI : 10.1126/science.286.5437.110

P. Keller and H. Dodt, Light sheet microscopy of living or cleared specimens, Current Opinion in Neurobiology, vol.22, issue.1, pp.138-143, 2012.
DOI : 10.1016/j.conb.2011.08.003

A. Erturk, K. Becker, and N. Jahrling, Three-dimensional imaging of solvent-cleared organs using 3DISCO, Nature Protocols, vol.4, issue.11, pp.1983-1995, 2012.
DOI : 10.1186/1472-6750-7-61

A. Erturk, D. Lafkas, and C. Chalouni, Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO, Journal of Visualized Experiments, vol.89, issue.89, pp.1-12, 2014.
DOI : 10.3791/51382

N. Renier, Z. Wu, D. Simon, J. Yang, P. Ariel et al., iDISCO: A Simple, Rapid Method to Immunolabel Large Tissue Samples for Volume Imaging, Cell, vol.159, issue.4, pp.896-910, 2014.
DOI : 10.1016/j.cell.2014.10.010

URL : https://doi.org/10.1016/j.cell.2014.10.010

N. Renier, E. Adams, and C. Kirst, Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes, Cell, vol.165, issue.7, pp.1789-1802, 2016.
DOI : 10.1016/j.cell.2016.05.007

C. Pan, R. Cai, and F. Quacquarelli, Shrinkage-mediated imaging of entire organs and organisms using uDISCO, Nature Methods, vol.89, issue.10, pp.859-867, 2016.
DOI : 10.1038/ncomms8990

M. Belle, D. Godefroy, and C. Dominici, A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System, Cell Reports, vol.9, issue.4, pp.1191-1201, 2014.
DOI : 10.1016/j.celrep.2014.10.037

URL : https://hal.archives-ouvertes.fr/hal-01083957

P. Launay, D. Godefroy, and H. Khabou, Combined 3DISCO clearing method, retrograde tracer and ultramicroscopy to map corneal neurons in a whole adult mouse trigeminal ganglion, Experimental Eye Research, vol.139, pp.136-143, 2015.
DOI : 10.1016/j.exer.2015.06.008

URL : https://hal.archives-ouvertes.fr/hal-01172713

T. Liebmann, N. Renier, K. Bettayeb, P. Greengard, M. Tessier-lavigne et al., Three-Dimensional Study of Alzheimer???s Disease Hallmarks Using the iDISCO Clearing Method, Cell Reports, vol.16, issue.4, pp.1138-1152, 2016.
DOI : 10.1016/j.celrep.2016.06.060

M. Belle, D. Godefroy, and G. Couly, Tridimensional Visualization and Analysis of Early Human Development, Cell, vol.169, issue.1, pp.161-173, 2017.
DOI : 10.1016/j.cell.2017.03.008

URL : https://hal.archives-ouvertes.fr/hal-01497677

C. Soderblom, D. Lee, and A. Dawood, 3D Imaging of Axons in Transparent Spinal Cords from Rodents and Nonhuman Primates, eNeuro, vol.2, issue.2, 2015.
DOI : 10.1523/ENEURO.0001-15.2015

K. Franklin and G. Paxinos, The mouse brain in stereotaxic coordinates, 1997.

N. Anden, A. Dahlstrom, K. Fuxe, and K. Larsson, Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon, Life Sciences, vol.4, issue.13, pp.1275-1279, 1965.
DOI : 10.1016/0024-3205(65)90076-7

T. Hökfelt, R. Martensson, and A. Björklund, Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain Handbook of Chemical Neuroanatomy. Classical transmitters in the CNS, Part I, pp.277-379, 1984.

R. Buijs, D. Velis, and D. Swaab, Ontogeny of vasopressin and oxytocin in the fetal rat: Early vasopressinergic innervation of the fetal brain, Peptides, vol.1, issue.4, pp.315-324, 1980.
DOI : 10.1016/0196-9781(80)90009-1

J. Hawthorn, V. Ang, and J. Jenkins, Comparison of the distribution of oxytocin and vasopressin in the rat brain, Brain Research, vol.307, issue.1-2, pp.289-294, 1984.
DOI : 10.1016/0006-8993(84)90482-7

M. Ludwig and G. Leng, Dendritic peptide release and peptide-dependent behaviours, Nature Reviews Neuroscience, vol.3, issue.2, pp.126-136, 2006.
DOI : 10.1113/jphysiol.2003.051136

M. Sofroniew and . Vasopressin, oxytocin and their related neurophysins Handbook of Chemical Neuroanatomy. GABA and Neuropeptides in the CNS, pp.93-165, 1985.

J. Epp, Y. Niibori, and H. Liz, Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs, eNeuro, vol.2, issue.3, 2015.
DOI : 10.1523/ENEURO.0022-15.2015

S. Yeo, V. Kyle, and P. Morris, Visualisation of Kiss1 neurone distribution using a Kiss1-CRE transgenic mouse, J Neuroendocrinol, vol.28, issue.11, 2016.

A. Bjorklund and S. Dunnett, Dopamine neuron systems in the brain: an update, Trends in Neurosciences, vol.30, issue.5, pp.194-202, 2007.
DOI : 10.1016/j.tins.2007.03.006

M. Ugrumov, V. Melnikova, P. Ershov, I. Balan, and A. Calas, Tyrosine hydroxylase- and/or aromatic L-amino acid decarboxylase-expressing neurons in the rat arcuate nucleus: ontogenesis and functional significance, Psychoneuroendocrinology, vol.27, issue.5, pp.533-548, 2002.
DOI : 10.1016/S0306-4530(01)00091-9

I. Balan, M. Ugrumov, A. Calas, P. Mailly, M. Krieger et al., Tyrosine hydroxylase-expressing and/or aromatic L-amino acid decarboxylase-expressing neurons in the mediobasal hypothalamus of perinatal rats: Differentiation and sexual dimorphism, The Journal of Comparative Neurology, vol.6, issue.2, pp.167-176, 2000.
DOI : 10.1016/0891-0618(93)90034-2

P. Sawchenko and L. Swanson, The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat, Brain Research Reviews, vol.4, issue.3, pp.275-325, 1982.
DOI : 10.1016/0165-0173(82)90010-8

M. Ugrumov, A. Tixier-vidal, J. Taxi, J. Thibault, and M. Mitskevich, Ontogenesis of tyrosine hydroxylase-immunopositive structures in the rat hypothalamus. Fiber pathways and terminal fields, Neuroscience, vol.29, issue.1, pp.157-166, 1989.
DOI : 10.1016/0306-4522(89)90339-4

M. Abramova, F. Marsais, A. Calas, J. Thibault, and M. Ugrumov, Dynamical study of tyrosine hydroxylase expression and its correlation with vasopressin turnover in the magnocellular neurons of the supraoptico-posthypophysial system under long-term salt loading of adult rats, Brain Research, vol.925, issue.1, pp.67-75, 2002.
DOI : 10.1016/S0006-8993(01)03260-7

M. Abramova, A. Calas, and M. Ugrumov, Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation, Brain Structure and Function, vol.405, issue.Suppl 1, pp.195-207, 2011.
DOI : 10.1016/0006-8993(87)90304-0

M. Ugrumov, A. Popov, S. Vladimirov, S. Kasmambetova, and J. Thibault, Development of the suprachiasmatic nucleus in rats during ontogenesis: Tyrosine hydroxylase immunopositive cell bodies and fibers, Neuroscience, vol.58, issue.1, pp.151-160, 1994.
DOI : 10.1016/0306-4522(94)90162-7

M. Beltramo, A. Calas, and E. Chernigovskaya, Postnatal development of the suprachiasmatic nucleus in the rat. Morpho-functional characteristics and time course of tyrosine hydroxylase immunopositive fibers, Neuroscience, vol.63, issue.2, pp.603-610, 1994.
DOI : 10.1016/0306-4522(94)90553-3

C. Wilson, C. Dakin, J. Rico, A. Golmohamad, Y. Ahmad-jauhari et al., The Anti-Dopaminergic Agent, Haloperidol, Antagonises the Feminising Effect of Neonatal Serotonin on Sexually Dimorphic Hypothalamic Nuclei and Tyrosine Hydroxylase Immunoreactive Neurones, Journal of Neuroendocrinology, vol.400, issue.7, pp.648-656, 2009.
DOI : 10.1113/jphysiol.1980.sp013266

M. Sofroniew and A. Weindl, Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus, American Journal of Anatomy, vol.4, issue.3, pp.391-429, 1978.
DOI : 10.1007/BF00220216

R. Buijs, The development of vasopressin and oxytocin systems in the brain Ontogeny of transmitters and peptides in the CNS, pp.547-572, 1992.

F. Vandesande and K. Dierickx, Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretroy system of the rat, Cell Tissue Res, vol.164, pp.153-162, 1975.

A. Silverman, R. Goldstein, and C. Gadde, The ontogenesis of neurophysin-containing neurons in the mouse hypothalamus, Peptides, vol.1, pp.27-44, 1980.
DOI : 10.1016/0196-9781(80)90101-1

M. Castel and J. Morris, The neurophysin-containing innervation of the forebrain of the mouse, Neuroscience, vol.24, issue.3, pp.937-966, 1988.
DOI : 10.1016/0306-4522(88)90078-4

M. Castel, N. Feinstein, S. Cohen, and N. Harari, Vasopressinergic innervation of the mouse suprachiasmatic nucleus: An immuno-electron microscopic analysis, The Journal of Comparative Neurology, vol.5, issue.2, pp.172-187, 1990.
DOI : 10.1007/BF00225365

V. Grinevich, M. Desarmenien, and B. Chini, Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders, Frontiers in Neuroanatomy, vol.17, issue.133, p.164, 2014.
DOI : 10.1038/nn.3634

B. Rood, D. Vries, and G. , Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord, The Journal of Comparative Neurology, vol.400, issue.12, pp.2434-2474, 2011.
DOI : 10.1038/23650

M. Otero-garcia, C. Agustin-pavon, E. Lanuza, and F. Martinez-garcia, Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice, Brain Structure and Function, vol.49, issue.4, pp.3445-3473, 2016.
DOI : 10.1016/0301-0082(96)00020-2

M. Ugrumov, Magnocellular vasopressin system in ontogenesis: Development and regulation, Microscopy Research and Technique, vol.5, issue.2, pp.164-171, 2002.
DOI : 10.1016/S0165-3806(00)00020-1

A. Hou-yu, A. Lamme, E. Zimmerman, and A. Silverman, Comparative Distribution of Vasopressin and Oxytocin Neurons in the Rat Brain Using a Double-Label Procedure, Neuroendocrinology, vol.44, issue.2, pp.235-246, 1986.
DOI : 10.1159/000124651

C. Callewaere, G. Banisadr, and M. Desarmenien, The chemokine SDF-1/CXCL12 modulates the firing pattern of vasopressin neurons and counteracts induced vasopressin release through CXCR4, Proceedings of the National Academy of Sciences, vol.16, issue.4, pp.8221-8226, 2006.
DOI : 10.1111/j.0953-8194.2004.01166.x

X. Jing, A. Ratty, and D. Murphy, Ontogeny of the vasopressin and oxytocin RNAs in the mouse hypothalamus, Neuroscience Research, vol.30, issue.4, pp.343-349, 1998.
DOI : 10.1016/S0168-0102(98)00017-0

A. Trembleau, M. Ugrumov, D. Roche, and A. Calas, Vasopressin and oxytocin gene expression in intact rats and under catecholamine deficiency during ontogenesis, Brain Research Bulletin, vol.37, issue.5, pp.437-448, 1995.
DOI : 10.1016/0361-9230(95)00020-F

S. Hyodo, C. Yamada, T. Takezawa, and A. Urano, Expression of provasopressin gene during ontogeny in the hypothalamus of developing mice, Neuroscience, vol.46, issue.1, pp.241-250, 1992.
DOI : 10.1016/0306-4522(92)90024-V

J. Cazemier, F. Clasca, and P. Tiesinga, Connectomic Analysis of Brain Networks: Novel Techniques and Future Directions, Frontiers in Neuroanatomy, vol.156, p.110, 2016.
DOI : 10.1016/j.cell.2014.02.023