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A combination of resonant inelastic x-ray scattering and resonant Auger spectroscopy provides
complementary information on the dynamic response of resonantly excited molecules. This is ex-
emplified for CH3I, for which we reconstruct the potential energy surface of the dissociative I 3d−2

double-core-hole state and determine its lifetime. The proposed method holds a strong potential for
monitoring the hard x-ray induced electron and nuclear dynamic response of core-excited molecules
containing heavy elements, where ab initio calculations of potential energy surfaces and lifetimes
remain challenging.

Hard x-ray radiation, with photon energy above 1 keV,
can excite deep core shells of heavy atoms (Cl 1s, S 1s,
I 2p etc) and may cause breakage of the chemical bonds
and drastic changes to the electronic structure. The in-
terplay between the induced nuclear and electron dynam-
ics determines the response of a core-excited molecule. In
the case of resonant excitation to a dissociative molecu-
lar state, the time evolution of the relaxation process is
determined by the potential energy surface (PES) and
the lifetime of the excited state. The so called ”core-hole
clock” spectroscopy (CHCS) allows probing ultrafast dy-
namics, occurring in a resonantly core-excited molecule
within the core-hole lifetime, through control over the
photon energy [1–4].

Resonant inelastic x-ray scattering (RIXS) and res-
onant Auger electron spectroscopy (RAS) are the two
CHCS techniques relevant, respectively, to the measure-
ments of x-ray photons or Auger electrons emitted in
the course of relaxation of core-excited molecular states.
As the probability of radiative relaxation of core-excited
atoms increases with atomic number, both RIXS and
RAS become equally relevant in the hard x-ray regime
[5–14]. However, the major difference between these tech-
niques appears in the electronic final states reached upon
relaxation. In the case of RIXS, the molecule remains
neutral with an electron in the excited orbital and a sin-
gle hole, whereas in the case of resonant spectator Auger
decay, the molecule becomes singly charged with an elec-
tron in the excited orbital and a double hole.

Spectroscopy of double core-hole (DCH) states, cre-
ated either with intense XFEL radiation through multi-
photon absorption [15–17] or with high-energy photons
provided by synchrotron radiation [18–23], has been a
hot topic in the recent years. The quantitative under-
standing of hard x-ray induced processes in polyatomic
molecules [24], including nuclear dynamics of DCH states
in molecules, formed in the course of cascade relaxations,
is of particular interest in relation to radiation-induced
damage in organic tissue and coherent diffraction imag-
ing [25, 26].

In this Letter, we demonstrate an original method to
extract information on the electron and nuclear dynamic
response of molecules in DCH states, created with hard
x-ray radiation. In contrast to soft x-ray region, where
nuclear dynamics occurs in a core-excited state, a short
lifetime of a core-excited state in the hard x-ray regime
allows a simple and, hence, robust way to reconstruct the
PES that affects the evolution of a nuclear wave packet
(WP) in the final state. Furthermore, we obtain an esti-
mate of the I 3d−2 DCH state lifetime, which determines
the dynamics of the electronic structure evolution at the
subsequent relaxation step. Our experimental method is
validated by comparing the results obtained for CH3Cl
molecule with ab initio calculations of PES and the value
of the Cl 2p−2 DCH lifetime estimated with other experi-
mental methods. The advantage of our approach is espe-
cially significant in molecules, such as CH3I, that contain
heavy multielectron atoms and, thus, present a serious



2

challenge for ab initio description due to a large number
of shells and the necessity to account for the electronic
relaxation effects.

The RIXS measurements were performed at the ID26
beamline at the European Synchrotron Radiation Facil-
ity (ESRF). The experimental setup and the experimen-
tal settings are described in detail in [12, 27]. The RIXS
spectra corresponding to the L3M4,5 transition were ac-
quired with a total instrumental resolution of ≈ 0.65 eV
determined from the width of the elastic peak, which in-
cludes the incident photon bandwidth and the spectrom-
eter resolution.

The RAS measurements were performed at the end-
station HAXPES, based on a hemispherical electron an-
alyzer installed on the GALAXIES beamline at the syn-
chrotron SOLEIL [28, 29]. The spectrometer is set par-
allel to the light polarization vector. The L3M4,5M4,5

Auger spectra were recorded with the total resolution
of ≈ 0.6 eV, which includes the photon bandwidth, the
spectrometer resolution and the thermal Doppler broad-
ening.

The RIXS and RAS measurements are presented in
Figure 1 in the form of 2D maps, obtained by record-
ing the spectra while changing the incident photon en-
ergy with a step of 0.2 eV around the I L3 edge. Below
the ionization threshold located around 4565 eV, both
maps contain resonant lines dispersing with photon en-
ergy. The resonant excitation from the I 2p3/2 shell to
the lowest unoccupied molecular orbital (LUMO) 15a1
occurs at 4559.2 eV photon energy. Above ionization
threshold the maps display the onset of non-resonant
L3M4,5 fluorescence and L3M4,5M4,5 normal Auger lines
independent of the photon energy. The rich multiplet
Auger structure is assigned in the Supplemental Material
[30]. For a further analysis, we select in both maps a well
separated resonant line marked with a circle and trace its
spectral shape as a function of photon energy around the
2p3/2 → 15a1 resonant transition. The final state config-

uration for the selected lines is 3d−1
5/2LUMO∗ in the case

of RIXS and (3d−2
5/2)4LUMO∗ in the case of RAS. Fig-

ure 1(c) shows the full width at half maximum (FWHM)
of the selected RIXS and Auger lines as a function of
the incident photon energy around the LUMO absorp-
tion resonance. The error bars are extracted from the fit
of the experimental spectra with Voigt profiles using the
SPANCF macro package [31, 32].

The cross section for RIXS and RAS in the case of
dissociative intermediate and final states is described
by the generalized Kramers-Heisenberg formula [33]. In
Franck-Condon and Born-Oppenheimer approximations
the dipole and Coulomb transition matrix elements are
independent of the nuclear coordinates and the expres-
sion for the cross section for a given final state simplifies

4570

4560

P
ho

to
n 

en
er

gy
 (

eV
)

394039303920
Scattered photon energy (eV)

L3M4 L3M5

4570

4560

4550

P
ho

to
n 

en
er

gy
 (

eV
)

33003280326032403220
Electron kinetic energy (eV)

ABCDEF

3d
-2

3d
-2

LUMO*

3d
-2

(LUMO+1)*

(a)

(b)

1.8

1.6

1.4

1.2

1.0

F
W

H
M

 (
eV

)

456145594557
Photon energy (eV)

(c)

FIG. 1: (a) RIXS L3M4,5 and (b) Auger L3M4,5M4,5 spectra
recorded in CH3I near the I L3 edge. A detailed assignment
of the labeled Auger lines is presented in the Supplemental
Material. (c) FWHM of RIXS emission line (triangles) and
Auger line (circles) selected in (a) and (b), respectively, as a
function of photon energy around the LUMO resonance. Er-
ror bars are obtained from the fits of the experimental spectra.
Solid lines show simulations based on Eqs.2 and 3.
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Here the subscripts i = f , c and o stand respectively
for the final, intermediate and ground molecular states,
ω is the incident photon energy, ω′ is the energy of
the scattered photon or of the ejected Auger electron,
ωjo ≡ Uj(r0)−Eo is the energy of the o → j = c, f verti-
cal transition, Eo is the total energy of the ground state
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(electronic + nuclear), Γc,f are the lifetime broadenings
of the intermediate and final states described by the dis-
sociative potentials Uc,f (r), ∆Ec,f = Ec,f − ∆Uc,f are
the local nuclear kinetic energies at the point of the ver-
tical transition r = r0, ∆Uc,f ≡ Uc,f(r0) − Uc,f (r → ∞)
and Ec,f are the nuclear kinetic energies at r → ∞.
The numerator in Eq.(1) contains Franck-Condon (FC)
overlaps between the nuclear wave functions χi and
L(ω − ω′ − ωfo −∆Ef ,Γf ) is the normalized Lorentzian
function with the FWHM equal to Γf that accounts for
energy conservation throughout the whole absorption-
decay process.
In our case both the core-excited and final states are

dissociative along the C–I bond [12]. However, due to
the large reduced mass and an extremely short lifetime
of only 200 as of the I 2p−1

3/2 core-excited state [35], we

can neglect the propagation of the nuclear WP in the in-
termediate state and consider an instantaneous transfer
[4] of the initial WP |χo〉 to the final state at the equilib-
rium internuclear distance r0=2.139 Å. Consequently, the
numerator in Eq.(1) describes a projection of the ground-
state wave function localized near the equilibrium r0 onto
the continuum wave function in the final state |〈χf |χo〉|

2.
Furthermore, during fast scattering the nuclei have no
time to change the local velocities as well as the local
kinetic energies ∆Ec ≈ ∆Ef ≡ ǫ. Then the cross section
reads

σ(ω, ω′) ∝

∞
∫

−∆Uf

dǫ exp

(

−
ǫ2

∆2
f

)

×L(ω − ωco − ǫ,Γc)L(ω − ω′ − ωfo − ǫ,Γf ), (2)

where ∆f = Ffoao is the width of the FC distribution
connecting the ground and the final states, Ffo is the
absolute value of the gradient of the PES of the dissocia-
tive final state at the equilibrium internuclear distance,

ao =
(

~

µωo

)1/2

is the width of the nuclear WP in the

ground state, µ is the reduced mass of the molecule with
1
µ = 1

mCH3

+ 1
mI

and ωo is the vibrational frequency along

the C–I bond.
When the lifetime width of the final state is negli-

gible Γf ≪ Γc,∆f , then L(ω − ω′ − ωfo − ǫ,Γf) ≈
δ(ω−ω′−ωfo− ǫ) and the cross section can be expressed
analytically [34]:

σ(ω, ω′) ∝ exp

(

−
(ω − ω′ − ωfo)

2

∆2
f

)

×L(ω′ − ωco + ωfo,Γc). (3)

This approximation is generally valid in the case of RIXS
[5, 8, 12]. However, in the case of RAS, the lifetime
broadening of the DCH final state may be non-negligible
and the cross section must be evaluated using Eq.(2).
Convolution of the theoretical cross sections in Eqs.(2)

and (3) with a Gaussian describing instrumental func-

tion allows for a direct comparison with the experi-
mental results presented in Fig.1(c). In our simula-
tions we fixed the following parameters: ωco=4559.2 eV,
ωfo=620.9 eV in the case of RIXS and ωfo=1283.2 eV
in the case of Auger as follows from the experimen-
tal observations, Γc(2p

−1
3/2)=2.7 eV [35], reduced mass

of CH3I µ=13.4 amu, C–I vibrational frequency ωo=16
THz, which gives ao = 0.07 Å. The unknown values for
the lifetime broadening of the DCH final state in the
case of Auger Γf (3d

−2
5/2) and the gradients Ffo(3d

−2
5/2) and

Ffo(3d
−1
5/2) of the PES of the final states at the equilib-

rium internuclear distance were kept as free parameters
and have been determined from the fit exhibiting an ex-
cellent agreement with the experimental data.

The line narrowing at the resonant absorption energy
of 4559.2 eV observed in both cases in Fig.1(c) is due
to the quenching of the vibrational broadening reflected
by the FC distribution in the core-excited state and was
previously observed in molecular RIXS and RAS spec-
tra [5, 9, 12]. The overall larger FWHM for the Auger
line as compared to the RIXS line reflects two important
differences between the final states. Close to the reso-
nance, where the line width is mainly determined by the
lifetime broadening, the FWHM of the Auger line indi-
cates a larger lifetime broadening of the final 3d−2

5/2 DCH

state with respect to the 3d−1
5/2 single core-hole (SCH)

state. At the photon energies above or below the reso-
nance, where the line width is strongly dependent on the
FC dynamical broadening, the larger width of the Auger
line indicates a larger width of the FC distribution ∆f

and, consequently, a more dissociative character of the
3d−2

5/2 DCH state as compared to the 3d−1
5/2 SCH state. In

spite of the lack of ab initio calculations that could re-
produce these differences, we can elucidate and quantify
the observed effect directly from our measurements.

Our results provide us with two important findings.
First, the extracted value Γf (3d

−2
5/2) = 1.05 ± 0.05 eV

shows that the lifetime τ ∝ 1/Γ of the DCH state is 0.6
fs that is around two times shorter than the lifetime of
the SCH state τ=1.2 fs, where Γf (3d

−1
5/2) = 0.56±0.05 eV

[35]. The lifetimes of 1s−2 DCH and the corresponding
1s−1 SCH states were previously reported for Ca, V, Cr,
Co and Zn atoms [36], where the former were found to be
2.2 times shorter than the latter. In our recent work on
1s−2 DCH states in neon [23] and 2p−2 DCH states in ar-
gon [37] we have reported the ratios of 2.9 and 2.8, respec-
tively. In order to validate our method, we have applied it
to the previously measured RIXS and RAS in CH3Cl ex-
cited at the Cl K-shell [9]. The extracted lifetime broad-
ening of the Cl 2p−2 state Γ(2p−2) = 0.25± 0.02 eV that
is around 2.9±0.2 times larger than Γ(2p−1) = 0.086 eV
[38], is consistent with the observations in argon [37].
The obtained value of the Cl 2p−2 lifetime broadening
explains also the discrepancy between the experimental
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data and simulations of the resonant Cl KLL Auger line
using Eq.(3), where the lifetime of the final state was ne-
glected [9]. As suggested in [23], the ΓDCH/ΓSCH ratio
must be dependent on the effective charge of the nucleus
seen by electrons as well as on principal quantum num-
ber of the shells involved in the relaxation. For atoms
with high atomic number and consequently, large effec-
tive charge, the ratio is expected to converge to 2. Our
results are in line with this hypothesis and provide a test
case for further theoretical modeling.

A second finding concerns the obtained absolute values

of the PES gradients at the equilibrium C–I interatomic
distance: Ffo(3d

−2
5/2) = 7.9 ± 0.3 eV/Å, Ffo(3d

−1
5/2) =

7.1 ± 0.3 eV/Å. A dissociative potential Uf(r) can be
described by an exponential shape [39]:

Uf (r) = ∆Uf exp

[(

−Ffo

∆Uf

)

(r − r0)

]

+Uf(r → ∞) (4)

Here Uf (r0) is known from the experiment and the
asymptotic PES value at large C–I distances, where
dissociation is completed, Uf (r → ∞), can be calcu-
lated from the transition energies in atomic iodine and
the molecular dissociation energy in the ground state.
Atomic transition energies were calculated using rela-
tivistic Grasp2k code [40] in the single configuration
scheme. Note that in the case of RIXS, where both the
intermediate and the final states are dissociative SCH
states, their PES can often be considered as parallel to
each other [5, 12]. Therefore, we can assume the gradi-
ents of the I 2p−1

3/2LUMO∗ and 3d−1
5/2LUMO∗ states to be

equal at r0.
Fig. 2(a) shows the simulated PES of the intermedi-

ate 2p−1
3/2LUMO∗, the final 3d−1

5/2LUMO∗ SCH and the

final 3d−2
5/2LUMO∗ DCH states. This is an important

outcome of our experimental analysis, since the existing
theoretical tools for molecular PES calculations are so
far not suitable for systems containing heavy multielec-
tron elements. We confirm the reliability of our method
using the case of CH3Cl excited at the Cl K-shell [9]
(Fig. 2(b)). The extracted absolute values of the PES
gradients at the equilibrium C–Cl interatomic distance,
Ffo(2p

−2) = 11.1± 0.3 eV/Å and Ffo(2p
−1) = 10± 0.3

eV/Å, provide a perfect agreement between the PES sim-
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ulated with our method using Eq.(4) and the results of
ab initio calculations using MOLPRO package [41] at the
CASSCF level, where we chose a Gaussian basis set aug-
cc-pCVTZ [42, 43], to take into account core-core and
core-valence correlation effects, and included relativistic
corrections with the use of the Douglas-Kroll Hamilto-
nian [44, 45].

The obtained PES allow predicting the dissociation dy-
namics in the final states. We have adopted a method
that uses an analytic representation of the WP based on
Heller’s semiclassical approach and has proven to pro-
vide an excellent agreement with the numerical solution
of the time-dependent Schrödinger equation [39, 46, 47].
Fig. 3(a) and (b) show the time evolution of the ordinary

norm-conserving WP |χ(r, t)|
2
in CH3I along the simu-

lated dissociative PES of the final 3d−2
5/2LUMO∗ DCH and

3d−1
5/2LUMO∗ SCH states, respectively. In both cases we

can observe a narrowing of the WP width by 20-30% from
its initial value occurring around t=10 fs and a subse-
quent broadening during further evolution. The observed
narrowing effect occurs in CH3I at times significantly ex-
ceeding the determined 0.6 fs lifetime of the DCH state,
when the population of this state is considerably depleted
due to the Auger decay. However, it may play a role in
molecules with light atomic constituents such as hydro-
gen halides undergoing fast dissociation [14].

The predicted collapse of the WP width reflects the
topology of the PES. A variation of PES gradient in the
FC zone, determined by d2Uf (ro)/dr

2 ∝ F2
fo/∆Uf , sets

the initial conditions for the continuum vibrational wave
functions composing a coherent nuclearWP in such a way
that the tail of the WP propagates with a higher phase
velocity than its front. In the course of propagation, the
tail components of the WP may catch up and eventually
overtake the front, which results in a spatial narrowing
and a subsequent broadening of the WP width.

In conclusion, we have demonstrated a novel experi-
mental method to obtain information on the lifetime and
PES of dissociative SCH and DCH states in molecules,
core-excited with hard x-ray radiation. Our approach
provides a unique opportunity to determine the time
scales for evolution of electronic and molecular struc-
ture in molecules containing heavy multielectron atoms,
where ab initio description so far remains challenging.
The method can be directly applied to other quasi-
diatomic molecules where nuclear dynamics can be de-
scribed with a dominant dissociative degree of freedom
along the molecular axis. Generalization to polyatomic
molecules with multiple dissociative degrees of freedom
requires inclusion of multidimensional Franck-Condon
factors in the adapted version of the Kramers-Heisenberg
formula.
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Guillemin, J.-P. Rueff, R. K. Kushawaha, R. Püttner, M.
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N. Sisourat, S. Carniato, R. Guillemin, L. Journel, D.
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D. Westphal et al., Nature 470, 7881 (2011).

[26] S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends,
A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J.
Steinbrener, R. L. Shoeman et al., Science 337, 362364
(2012).
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