L. Zhao, The gut microbiota and obesity: from correlation to causality, Nature Reviews Microbiology, vol.2, issue.9, pp.639-686, 2013.
DOI : 10.1038/nrmicro799

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.44, issue.7415, pp.242-251, 2012.
DOI : 10.1017/S0007114510003363

URL : http://www.nature.com/nature/journal/v489/n7415/pdf/nature11552.pdf

M. Khan, M. Nieuwdorp, and F. Bäckhed, Microbial Modulation of Insulin Sensitivity, Cell Metabolism, vol.20, issue.5, pp.753-60, 2014.
DOI : 10.1016/j.cmet.2014.07.006

URL : https://doi.org/10.1016/j.cmet.2014.07.006

L. Chatelier, E. Nielsen, T. Qin, J. Prifti, E. Hildebrand et al., Richness of human gut microbiome correlates with metabolic markers, Nature, vol.40, issue.7464, pp.541-547, 2013.
DOI : 10.1093/nar/gkr988

URL : https://hal.archives-ouvertes.fr/hal-01190602

F. Karlsson, V. Tremaroli, I. Nookaew, G. Bergström, C. Behre et al., Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature, vol.35, issue.7452, pp.99-103, 2013.
DOI : 10.1111/j.1574-6976.2010.00251.x

J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu et al., A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, vol.334, issue.7418, pp.55-60, 2012.
DOI : 10.1126/science.1208344

URL : https://hal.archives-ouvertes.fr/hal-01204262

X. Zhang, D. Shen, Z. Fang, Z. Jie, X. Qiu et al., Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance, PLoS ONE, vol.73, issue.8, 2013.
DOI : 10.1371/journal.pone.0071108.s010

I. Kirpich, L. Marsano, and C. Mcclain, Gut???liver axis, nutrition, and non-alcoholic fatty liver disease, Clinical Biochemistry, vol.48, issue.13-14, pp.923-953, 2015.
DOI : 10.1016/j.clinbiochem.2015.06.023

F. Karlsson, F. Fåk, I. Nookaew, V. Tremaroli, B. Fagerberg et al., Symptomatic atherosclerosis is associated with an altered gut metagenome, Nature Communications, vol.40, p.1245, 2012.
DOI : 10.1093/bioinformatics/btq461

URL : http://www.nature.com/articles/ncomms2266.pdf

G. Wu, C. J. Hoffmann, C. Bittinger, K. Chen, Y. Keilbaugh et al., Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes, Science, vol.107, issue.33, pp.105-113, 2011.
DOI : 10.1073/pnas.1005963107

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368382/pdf

L. Kong, B. Holmes, A. Cotillard, F. Habi-rachedi, R. Brazeilles et al., Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects, PLoS ONE, vol.133, issue.10, 2014.
DOI : 10.1371/journal.pone.0109434.s003

URL : https://hal.archives-ouvertes.fr/hal-01365890

N. Griffin, P. Ahern, J. Cheng, A. Heath, O. Ilkayeva et al., Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions, Cell Host & Microbe, vol.21, issue.1, pp.84-96, 2017.
DOI : 10.1016/j.chom.2016.12.006

V. Ridaura, J. Faith, F. Rey, J. Cheng, A. Duncan et al., Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice, Science, vol.59, issue.12, p.1241214, 2013.
DOI : 10.2337/db10-0253

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829625/pdf

I. Cho, S. Yamanishi, L. Cox, B. Methé, J. Zavadil et al., Antibiotics in early life alter the murine colonic microbiome and adiposity, Nature, vol.20, issue.7413, pp.621-627, 2012.
DOI : 10.1002/bmc.580

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553221/pdf

J. De-la-cuesta-zuluaga, N. Mueller, V. Corrales-agudelo, E. Velásquez-mejía, J. Carmona et al., and Several Short-Chain Fatty Acid???Producing Microbiota in the Gut, Diabetes Care, vol.40, issue.1, pp.54-62, 2017.
DOI : 10.2337/dc16-1324

N. Shin, J. Lee, H. Lee, M. Kim, T. Whon et al., spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice, Gut, vol.483, issue.Suppl 1, pp.727-762, 2013.
DOI : 10.1038/nature10863

K. Forslund, F. Hildebrand, T. Nielsen, G. Falony, L. Chatelier et al., Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota, Nature, vol.14, issue.7581, pp.262-268, 2015.
DOI : 10.1186/gb-2013-14-1-r4

URL : https://hal.archives-ouvertes.fr/hal-01535324

C. Klaassen and J. Cui, Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids, Drug Metabolism and Disposition, vol.43, issue.10, pp.1505-1526, 2015.
DOI : 10.1124/dmd.115.065698

P. Cani, J. Amar, M. Iglesias, M. Poggi, C. Knauf et al., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance, Diabetes, vol.56, issue.7, pp.1761-72, 2007.
DOI : 10.2337/db06-1491

URL : http://diabetes.diabetesjournals.org/content/diabetes/56/7/1761.full.pdf

C. Erridge, T. Attina, C. Spickett, and D. Webb, A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation, Am J Clin Nutr, vol.86, pp.1286-92, 2007.

T. Postler and S. Ghosh, Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System, Cell Metabolism, vol.26, issue.1, pp.110-140, 2017.
DOI : 10.1016/j.cmet.2017.05.008

J. Sonnenburg and F. Bäckhed, Diet???microbiota interactions as moderators of human metabolism, Nature, vol.17, issue.7610, pp.56-64, 2016.
DOI : 10.1111/1462-2920.12599

D. Morrison and T. Preston, Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism, Gut Microbes, vol.96, issue.3, pp.189-200, 2016.
DOI : 10.1016/j.nutres.2015.05.008

P. Turnbaugh, R. Ley, M. Mahowald, V. Magrini, E. Mardis et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.20, issue.7122, pp.1027-131, 2006.
DOI : 10.1038/nature05414

A. Schwiertz, D. Taras, K. Schäfer, S. Beijer, N. Bos et al., Microbiota and SCFA in Lean and Overweight Healthy Subjects, Obesity, vol.57, issue.1 Suppl, pp.190-195, 2010.
DOI : 10.2337/db07-1403

URL : http://onlinelibrary.wiley.com/doi/10.1038/oby.2009.167/pdf

E. Canfora, J. Jocken, and E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity, Nature Reviews Endocrinology, vol.85, issue.10, pp.577-91, 2015.
DOI : 10.1038/ejcn.2012.98

G. Frost, M. Sleeth, M. Sahuri-arisoylu, B. Lizarbe, S. Cerdan et al., The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism, Nature Communications, vol.30, p.3611, 2014.
DOI : 10.1002/mrm.1910300604

M. Monteiro-sepulveda, S. Touch, C. Mendes-sá, S. André, C. Poitou et al., Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling, Cell Metabolism, vol.22, issue.1, pp.113-137, 2015.
DOI : 10.1016/j.cmet.2015.05.020

URL : https://doi.org/10.1016/j.cmet.2015.05.020

S. Touch, K. Clément, and S. André, T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes, Current Diabetes Reports, vol.16, issue.5, 2017.
DOI : 10.1038/nrc.2016.36

URL : https://hal.archives-ouvertes.fr/hal-01582558

S. Eckle, A. Corbett, A. Keller, Z. Chen, D. Godfrey et al., Recognition of Vitamin B Precursors and Byproducts by Mucosal Associated Invariant T Cells, Journal of Biological Chemistry, vol.161, issue.51, pp.30204-30215, 2015.
DOI : 10.1371/journal.ppat.1003681

R. Koeth, Z. Wang, B. Levison, J. Buffa, E. Org et al., Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis, Nature Medicine, vol.129, issue.5, pp.576-85, 2013.
DOI : 10.1007/s001840200192

W. Tang and S. Hazen, The contributory role of gut microbiota in cardiovascular disease, Journal of Clinical Investigation, vol.124, issue.10, pp.4204-4215, 2014.
DOI : 10.1172/JCI72331

W. Tang, Z. Wang, B. Levison, R. Koeth, E. Britt et al., Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk, New England Journal of Medicine, vol.368, issue.17, pp.1575-84, 2013.
DOI : 10.1056/NEJMoa1109400

URL : https://doi.org/10.1016/j.jvs.2013.06.007

H. Pedersen, V. Gudmundsdottir, H. Nielsen, T. Hyotylainen, T. Nielsen et al., Human gut microbes impact host serum metabolome and insulin sensitivity, Nature, vol.36, issue.7612, pp.376-81, 2016.
DOI : 10.1111/j.1745-9125.1998.tb01268.x

URL : https://hal.archives-ouvertes.fr/hal-01594855

C. Newgard, A. J. Bain, J. Muehlbauer, M. Stevens, R. Lien et al., A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance, Cell Metabolism, vol.9, issue.4, pp.311-337, 2009.
DOI : 10.1016/j.cmet.2009.02.002

URL : https://doi.org/10.1016/j.cmet.2009.02.002

T. Yatsunenko, F. Rey, M. Manary, I. Trehan, M. Dominguez-bello et al., Human gut microbiome viewed across age and geography, Nature, vol.2, pp.222-229, 2012.
DOI : 10.1198/106186005X59243

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376388/pdf

D. Filippo, C. Cavalieri, D. , D. Paola, M. Ramazzotti et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proceedings of the National Academy of Sciences, vol.10, issue.23, pp.14691-14697, 2010.
DOI : 10.1023/A:1026096204727

S. Schnorr, M. Candela, S. Rampelli, M. Centanni, C. Consolandi et al., Gut microbiome of the Hadza hunter-gatherers, Nature Communications, vol.26, p.3654, 2014.
DOI : 10.1093/bioinformatics/bti394

J. Clemente, E. Pehrsson, M. Blaser, K. Sandhu, Z. Gao et al., The microbiome of uncontacted Amerindians, Science Advances, vol.1, issue.3, 2015.
DOI : 10.1126/sciadv.1500183

H. Liu, C. Hu, X. Zhang, and W. Jia, Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes, Journal of Diabetes Investigation, vol.141, 2017.
DOI : 10.1053/j.gastro.2011.07.046

A. Cotillard, S. Kennedy, L. Kong, E. Prifti, N. Pons et al., Dietary intervention impact on gut microbial gene richness, Nature, vol.27, issue.7464, pp.585-593, 2013.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

URL : https://hal.archives-ouvertes.fr/hal-01001543

M. Beaumont, J. Goodrich, M. Jackson, I. Yet, E. Davenport et al., Heritable components of the human fecal microbiome are associated with visceral fat, Genome Biology, vol.39, issue.1, pp.189-13059, 2016.
DOI : 10.1093/nar/gkr201

P. Turnbaugh, M. Hamady, T. Yatsunenko, B. Cantarel, A. Duncan et al., A core gut microbiome in obese and lean twins, Nature, vol.8, issue.7228, pp.480-484, 2008.
DOI : 10.4319/lo.1997.42.3.0487

C. Menni, M. Jackson, T. Pallister, C. Steves, T. Spector et al., Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain, International Journal of Obesity, vol.87, issue.7
DOI : 10.1038/ncomms7342

URL : http://www.nature.com/ijo/journal/v41/n7/pdf/ijo201766a.pdf

M. Sze and P. Schloss, Looking for a signal in the noise: revisiting obesity and the microbiome, MBio, vol.7, pp.1018-1034, 2016.

M. Derrien, C. Belzer, and W. De-vos, Akkermansia muciniphila and its role in regulating host functions, Microbial Pathogenesis, vol.106, pp.171-81, 2017.
DOI : 10.1016/j.micpath.2016.02.005

M. Dao, E. A. Aron-wisnewsky, J. Sokolovska, N. Prifti, E. Verger et al., and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut, vol.9, issue.3, pp.426-462, 2015.
DOI : 10.1038/ismej.2014.165

A. Everard, C. Belzer, L. Geurts, J. Ouwerkerk, C. Druart et al., Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proceedings of the National Academy of Sciences, vol.2, issue.6053, pp.9066-71, 2013.
DOI : 10.3389/fmicb.2011.00149

URL : http://www.pnas.org/content/110/22/9066.full.pdf

H. Plovier, A. Everard, C. Druart, C. Depommier, M. Van-hul et al., A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nature Medicine, vol.23, issue.1, pp.107-120, 2017.
DOI : 10.1128/jb.176.6.1756-1760.1994

J. Ouwerkerk, S. Aalvink, C. Belzer, D. Vos, and W. , cells for therapeutic interventions, Beneficial Microbes, vol.8, issue.2, pp.163-172, 2017.
DOI : 10.3920/BM2016.0096

F. Anhê, D. Roy, G. Pilon, S. Dudonné, S. Matamoros et al., spp. population in the gut microbiota of mice, Gut, vol.22, issue.(Suppl 1), pp.872-83, 2014.
DOI : 10.1096/fj.07-9574LSF

D. Roopchand, R. Carmody, P. Kuhn, K. Moskal, P. Rojas-silva et al., and Attenuate High-Fat Diet???Induced Metabolic Syndrome, Diabetes, vol.64, issue.8, pp.2847-58, 2015.
DOI : 10.2337/db14-1916

R. Caesar, V. Tremaroli, P. Kovatcheva-datchary, P. Cani, and F. Bäckhed, Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling, Cell Metabolism, vol.22, issue.4, pp.658-68, 2015.
DOI : 10.1016/j.cmet.2015.07.026

URL : https://doi.org/10.1016/j.cmet.2015.07.026

G. Jakobsdottir, J. Xu, G. Molin, S. Ahrné, and M. Nyman, High-Fat Diet Reduces the Formation of Butyrate, but Increases Succinate, Inflammation, Liver Fat and Cholesterol in Rats, while Dietary Fibre Counteracts These Effects, PLoS ONE, vol.490, issue.11, p.80476, 2013.
DOI : 10.1371/journal.pone.0080476.t005

M. Derrien, E. Vaughan, C. Plugge, and W. De-vos, Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.54, issue.5, pp.1469-76, 2004.
DOI : 10.1099/ijs.0.02873-0

J. Reunanen, V. Kainulainen, L. Huuskonen, N. Ottman, C. Belzer et al., Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer, Applied and Environmental Microbiology, vol.81, issue.11, pp.4050-4064, 2015.
DOI : 10.1128/AEM.04050-14

M. Derrien, P. Van-baarlen, G. Hooiveld, E. Norin, M. Müller et al., Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila, Frontiers in Microbiology, vol.2, p.166, 2011.
DOI : 10.3389/fmicb.2011.00166

N. Ottman, J. Reunanen, M. Meijerink, T. Pietilä, V. Kainulainen et al., Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function, PLOS ONE, vol.3, issue.4, 2017.
DOI : 10.1371/journal.pone.0173004.s002

URL : https://doi.org/10.1371/journal.pone.0173004

R. Greer, X. Dong, A. Moraes, R. Zielke, G. Fernandes et al., Akkermansia muciniphila mediates negative effects of IFN?? on glucose metabolism, Nature Communications, vol.4, 2016.
DOI : 10.1016/j.jaip.2015.07.025

M. Dao, E. A. Clément, K. Cani, and P. , Losing weight for a better health: Role for the gut microbiota, Clinical Nutrition Experimental, vol.6, pp.39-58, 2016.
DOI : 10.1016/j.yclnex.2015.12.001

URL : https://hal.archives-ouvertes.fr/hal-01250216

E. Sonnenburg, S. Smits, M. Tikhonov, S. Higginbottom, N. Wingreen et al., Diet-induced extinctions in the gut microbiota compound over generations, Nature, vol.19, issue.7585, pp.212-217, 2016.
DOI : 10.1093/protein/gzl044

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850918/pdf

P. Kovatcheva-datchary, A. Nilsson, R. Akrami, Y. Lee, D. Vadder et al., Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella, Cell Metabolism, vol.22, issue.6, pp.971-82, 2015.
DOI : 10.1016/j.cmet.2015.10.001

D. Zeevi, T. Korem, N. Zmora, D. Israeli, D. Rothschild et al., Personalized Nutrition by Prediction of Glycemic Responses, Cell, vol.163, issue.5, pp.1079-94, 2015.
DOI : 10.1016/j.cell.2015.11.001

S. Shoaie, P. Ghaffari, P. Kovatcheva-datchary, A. Mardinoglu, P. Sen et al., Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome, Cell Metabolism, vol.22, issue.2, pp.320-351, 2015.
DOI : 10.1016/j.cmet.2015.07.001

L. David, A. Materna, J. Friedman, M. Campos-baptista, M. Blackburn et al., Host lifestyle affects human microbiota on daily timescales, Genome Biology, vol.15, issue.7, 2014.
DOI : 10.1093/bioinformatics/btn209

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2014-15-7-r89?site=genomebiology.biomedcentral.com

N. Nguyen and J. Varela, Bariatric surgery for obesity and metabolic disorders: state of the art, Nature Reviews Gastroenterology & Hepatology, vol.9, issue.3, pp.160-169, 2017.
DOI : 10.1016/j.soard.2014.12.006

J. Aron-wisnewsky, J. Doré, and K. Clement, The importance of the gut microbiota after bariatric surgery, Nature Reviews Gastroenterology & Hepatology, vol.45, issue.10, pp.590-598, 2012.
DOI : 10.1097/MCG.0b013e31821f44c4

S. Madsbad, C. Dirksen, and J. Holst, Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery, The Lancet Diabetes & Endocrinology, vol.2, issue.2, pp.152-64, 2014.
DOI : 10.1016/S2213-8587(13)70218-3

A. Liou, M. Paziuk, J. Luevano, S. Machineni, P. Turnbaugh et al., Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Adiposity, Science Translational Medicine, vol.487, issue.7405, 2013.
DOI : 10.1128/AEM.66.5.2166-2174.2000

H. Zhang, J. Dibaise, A. Zuccolo, D. Kudrna, M. Braidotti et al., Human gut microbiota in obesity and after gastric bypass, Proceedings of the National Academy of Sciences, vol.89, issue.6, pp.2365-70, 2009.
DOI : 10.1002/bit.20347

URL : http://www.pnas.org/content/106/7/2365.full.pdf

J. Graessler, Y. Qin, H. Zhong, J. Zhang, J. Licinio et al., Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters, The Pharmacogenomics Journal, vol.13, issue.6, pp.514-536, 2012.
DOI : 10.1111/j.1463-1326.2011.01483.x

V. Tremaroli, F. Karlsson, M. Werling, M. Ståhlman, P. Kovatcheva-datchary et al., Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation, Cell Metabolism, vol.22, issue.2, pp.228-266, 2015.
DOI : 10.1016/j.cmet.2015.07.009

A. Palleja, A. Kashani, K. Allin, T. Nielsen, C. Zhang et al., Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota, Genome Medicine, vol.97, issue.Suppl 3, pp.67-13073, 2016.
DOI : 10.1097/00003072-199010000-00006

L. Kong, J. Tap, J. Aron-wisnewsky, V. Pelloux, A. Basdevant et al., Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes, American Journal of Clinical Nutrition, vol.98, issue.1, pp.16-24, 2013.
DOI : 10.3945/ajcn.113.058743

V. Patrone, E. Vajana, A. Minuti, M. Callegari, A. Federico et al., Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass, Frontiers in Microbiology, vol.106, 2016.
DOI : 10.1073/pnas.0812600106

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2016.00200/pdf

J. Furet, L. Kong, J. Tap, C. Poitou, A. Basdevant et al., Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss: Links With Metabolic and Low-Grade Inflammation Markers, Diabetes, vol.59, issue.12, pp.3049-57, 2010.
DOI : 10.2337/db10-0253

A. Damms-machado, S. Mitra, A. Schollenberger, K. Kramer, T. Meile et al., Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption, BioMed Research International, vol.14, issue.16, pp.1-12, 2015.
DOI : 10.1016/j.juro.2013.02.3229

J. Aron-wisnewsky and K. Clement, The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved Insulin Sensitivity, Current Atherosclerosis Reports, vol.33, issue.7, pp.11883-11897, 2014.
DOI : 10.1038/ijo.2008.260

E. Verger, J. Aron-wisnewsky, M. Dao, B. Kayser, J. Oppert et al., Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up, Obesity Surgery, vol.357, issue.8, pp.785-96, 2015.
DOI : 10.1056/NEJMoa066254

R. Kohli, D. Bradley, K. Setchell, J. Eagon, N. Abumrad et al., Weight Loss Induced by Roux-en-Y Gastric Bypass But Not Laparoscopic Adjustable Gastric Banding Increases Circulating Bile Acids, The Journal of Clinical Endocrinology & Metabolism, vol.98, issue.4, pp.708-122012, 2013.
DOI : 10.1210/jc.2012-3736

URL : https://academic.oup.com/jcem/article-pdf/98/4/E708/9049779/jcemE708.pdf

Z. Ilhan, J. Dibaise, N. Isern, D. Hoyt, A. Marcus et al., Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding, The ISME Journal, vol.5, issue.9, pp.2047-58, 2017.
DOI : 10.1073/pnas.0812600106

R. Murphy, P. Tsai, M. Jüllig, A. Liu, L. Plank et al., Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission, Obesity Surgery, vol.163, issue.4, pp.917-942, 2017.
DOI : 10.1016/j.cell.2015.11.001

V. Albaugh, C. Flynn, S. Cai, Y. Xiao, R. Tamboli et al., Early Increases in Bile Acids Post Roux-en-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids, The Journal of Clinical Endocrinology & Metabolism, vol.100, issue.9, pp.1225-332015, 2015.
DOI : 10.1210/jc.2015-2467

URL : https://academic.oup.com/jcem/article-pdf/100/9/E1225/10435145/jcem1225.pdf

M. Patti, S. Houten, A. Bianco, R. Bernier, P. Larsen et al., Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism, Obesity, vol.260, issue.9, pp.1671-1678, 2009.
DOI : 10.1172/JCI21025

URL : https://hal.archives-ouvertes.fr/inserm-00420817

N. Ahmad, A. Pfalzer, and L. Kaplan, Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity, International Journal of Obesity, vol.32, issue.12, pp.1553-1562, 2005.
DOI : 10.1016/j.nutres.2012.03.016

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157126/pdf

K. Ryan, V. Tremaroli, C. Clemmensen, P. Kovatcheva-datchary, A. Myronovych et al., FXR is a molecular target for the effects of vertical sleeve gastrectomy, Nature, vol.26, issue.7499, pp.183-191, 2014.
DOI : 10.1093/molbev/msp077

L. Kaska, T. Sledzinski, A. Chomiczewska, A. Dettlaff-pokora, and J. Swierczynski, Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome, World Journal of Gastroenterology, vol.22, issue.39, pp.8698-719, 2016.
DOI : 10.1007/s11695-016-2126-z

P. Cani and M. Van-hul, Novel opportunities for next-generation probiotics targeting metabolic syndrome, Current Opinion in Biotechnology, vol.32, pp.21-28, 2015.
DOI : 10.1016/j.copbio.2014.10.006

S. Park and J. Bae, Probiotics for weight loss: a systematic review and meta-analysis, Nutrition Research, vol.35, issue.7, pp.566-75, 2015.
DOI : 10.1016/j.nutres.2015.05.008

N. Delzenne, A. Neyrinck, F. Bäckhed, and P. Cani, Targeting gut microbiota in obesity: effects of prebiotics and probiotics, Nature Reviews Endocrinology, vol.13, issue.11, pp.639-685, 2011.
DOI : 10.1097/MCO.0b013e32833ec3fb

M. Sanchez, C. Darimont, S. Panahi, V. Drapeau, A. Marette et al., Effects of a Diet-Based Weight-Reducing Program with Probiotic Supplementation on Satiety Efficiency, Eating Behaviour Traits, and Psychosocial Behaviours in Obese Individuals, Nutrients, vol.73, issue.3, 2017.
DOI : 10.1016/j.appet.2010.12.005

M. Sanchez, C. Darimont, V. Drapeau, S. Emady-azar, M. Lepage et al., Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women, British Journal of Nutrition, vol.3, issue.08, pp.1507-1526, 2014.
DOI : 10.1128/AEM.72.2.1027-1033.2006

A. Madjd, M. Taylor, N. Mousavi, A. Delavari, R. Malekzadeh et al., Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: a randomized controlled trial, American Journal of Clinical Nutrition, vol.103, issue.2, pp.323-332, 2016.
DOI : 10.3945/ajcn.115.120170

G. Woodard, B. Encarnacion, J. Downey, J. Peraza, K. Chong et al., Probiotics Improve Outcomes After Roux-en-Y Gastric Bypass Surgery: A Prospective Randomized Trial, Journal of Gastrointestinal Surgery, vol.444, issue.7122, pp.1198-204, 2009.
DOI : 10.1177/147323000703500501

J. Chen, R. Wang, X. Li, and R. Wang, supplementation improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I gene expression, Experimental Biology and Medicine, vol.1216, issue.7, pp.823-854, 2011.
DOI : 10.1016/0167-4781(93)90167-C

S. Sherf-dagan, S. Zelber-sagi, G. Zilberman-schapira, M. Webb, A. Buch et al., Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial, International Journal of Obesity, vol.7, 2005.
DOI : 10.1016/j.metabol.2009.05.032

F. Backhed, H. Ding, T. Wang, L. Hooper, G. Koh et al., The gut microbiota as an environmental factor that regulates fat storage, Proceedings of the National Academy of Sciences, vol.137, issue.1, pp.15718-15741, 2004.
DOI : 10.1210/en.137.1.354

URL : http://www.pnas.org/content/101/44/15718.full.pdf

F. Bäckhed, J. Manchester, C. Semenkovich, and J. Gordon, Mechanisms underlying the resistance to diet-induced obesity in germ-free mice, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.979-84, 2007.
DOI : 10.1073/pnas.0602187103

A. Khoruts and M. Sadowsky, Understanding the mechanisms of faecal microbiota transplantation, Nature Reviews Gastroenterology & Hepatology, vol.9, issue.9, pp.508-524, 2016.
DOI : 10.1016/j.cgh.2011.08.014

R. Singh, M. Nieuwdorp, I. Ten-berge, F. Bemelman, and S. Geerlings, The potential beneficial role of faecal microbiota transplantation in diseases other than Clostridium difficile infection, Clinical Microbiology and Infection, vol.20, issue.11, pp.1119-1144, 2014.
DOI : 10.1111/1469-0691.12799

A. Vrieze, E. Van-nood, F. Holleman, J. Salojärvi, R. Kootte et al., Transfer of Intestinal Microbiota From Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome, Gastroenterology, vol.143, issue.4, pp.913-916, 2012.
DOI : 10.1053/j.gastro.2012.06.031

S. Li, A. Zhu, V. Benes, P. Costea, R. Hercog et al., Durable coexistence of donor and recipient strains after fecal microbiota transplantation, Science, vol.3, issue.4, pp.586-595, 2016.
DOI : 10.4161/gmic.19897

C. Marotz and A. Zarrinpar, Treating obesity and metabolic syndrome with fecal microbiota transplantation, Yale J Biol Med, vol.89, pp.383-391, 2016.

E. Van-nood, P. Speelman, M. Nieuwdorp, and J. Keller, Fecal microbiota transplantation, Current Opinion in Gastroenterology, vol.30, issue.1, pp.34-43, 2014.
DOI : 10.1097/MOG.0000000000000024

D. Bojanova and S. Bordenstein, Fecal Transplants: What Is Being Transferred?, PLOS Biology, vol.54, issue.6150, 2016.
DOI : 10.1371/journal.pbio.1002503.g001

URL : https://doi.org/10.1371/journal.pbio.1002503

G. Falony, M. Joossens, S. Vieira-silva, J. Wang, Y. Darzi et al., Population-level analysis of gut microbiome variation, Science, vol.7, issue.4, pp.560-564, 2016.
DOI : 10.1371/journal.pone.0052078

URL : https://hal.archives-ouvertes.fr/hal-01518384

J. Pfeiffer and H. Virgin, Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine, Science, vol.351, 2016.

I. Magalhaes, K. Pingris, C. Poitou, S. Bessoles, N. Venteclef et al., Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients, Journal of Clinical Investigation, vol.125, issue.4, pp.1752-62, 2015.
DOI : 10.1172/JCI78941DS1

URL : http://www.jci.org/articles/view/78941/files/pdf