C. Kami, S. Lorrain, P. Hornitschek, and C. Fankhauser, Light-Regulated Plant Growth and Development, Curr Top Dev Biol, vol.91, issue.10, pp.29-66, 2010.
DOI : 10.1016/S0070-2153(10)91002-8

K. Tilbrook, A. Arongaus, M. Binkert, M. Heijde, R. Yin et al., The UVR8 UV-B Photoreceptor: Perception, Signaling and Response, The Arabidopsis Book, vol.11, p.3711356, 2013.
DOI : 10.1199/tab.0164

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711356/pdf

I. Chaves, R. Pokorny, M. Byrdin, N. Hoang, T. Ritz et al., The Cryptochromes: Blue Light Photoreceptors in Plants and Animals, Annual Review of Plant Biology, vol.62, issue.1, pp.335-64, 2011.
DOI : 10.1146/annurev-arplant-042110-103759

URL : https://hal.archives-ouvertes.fr/hal-00720048

M. Ahmad, Photocycle and signaling mechanisms of plant cryptochromes, Current Opinion in Plant Biology, vol.33, pp.108-123, 2016.
DOI : 10.1016/j.pbi.2016.06.013

URL : https://hal.archives-ouvertes.fr/hal-01545366

B. Liu, Z. Yang, A. Gomez, B. Liu, C. Lin et al., Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana, Journal of Plant Research, vol.5, issue.12, pp.137-185, 2016.
DOI : 10.1093/mp/sss007

H. Yang, Y. Wu, R. Tang, D. Liu, Y. Liu et al., The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response, Cell, vol.103, issue.5, pp.815-842, 2000.
DOI : 10.1016/S0092-8674(00)00184-7

D. Shalitin, H. Yang, T. Mockler, M. Maymon, H. Guo et al., Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation, Nature, vol.103, issue.6890, pp.763-770, 2002.
DOI : 10.1046/j.1365-313X.1996.10050893.x

D. Shalitin, X. Yu, M. Maymon, T. Mockler, and C. Lin, Blue Light-Dependent in Vivo and in Vitro Phosphorylation of Arabidopsis Cryptochrome 1, THE PLANT CELL ONLINE, vol.15, issue.10, pp.2421-2430, 2003.
DOI : 10.1105/tpc.013011

X. Yu, D. Shalitin, X. Liu, M. Maymon, J. Klejnot et al., Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2, Proceedings of the National Academy of Sciences, vol.234, issue.1, pp.7289-94, 2007.
DOI : 10.1006/viro.1997.8634

Q. Wang, Z. Zuo, X. Wang, L. Gu, T. Yoshizumi et al., cryptochrome 2, Science, vol.286, issue.6310, pp.343-350, 2016.
DOI : 10.1093/bioinformatics/bti551

Q. Liu, Q. Wang, W. Deng, X. Wang, M. Piao et al., Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2, Nature Communications, vol.13, pp.15234-5437284, 2017.
DOI : 10.1038/nmeth.3811

C. Fankhauser and R. Ulm, Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression, Genes & Development, vol.25, issue.10, pp.1004-1013, 2011.
DOI : 10.1101/gad.2053911

URL : http://genesdev.cshlp.org/content/25/10/1004.full.pdf

C. Fankhauser and A. Batschauer, Shadow on the Plant: A Strategy to Exit, Cell, vol.164, issue.1-2, pp.15-22, 2016.
DOI : 10.1016/j.cell.2015.12.043

Z. Zuo, H. Liu, B. Liu, X. Liu, and C. Lin, Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis, Current Biology, vol.21, issue.10, pp.841-848, 2011.
DOI : 10.1016/j.cub.2011.03.048

B. Liu, Z. Zuo, H. Liu, X. Liu, and C. Lin, Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light, Genes & Development, vol.25, issue.10, pp.1029-1063, 2011.
DOI : 10.1101/gad.2025011

URL : http://genesdev.cshlp.org/content/25/10/1029.full.pdf

H. Lian, S. He, Y. Zhang, D. Zhu, J. Zhang et al., Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism, Genes & Development, vol.25, issue.10, pp.1023-1031, 2011.
DOI : 10.1101/gad.2025111

C. Menon, D. Sheerin, and A. Hiltbrunner, SPA proteins: SPAnning the gap between visible light and gene expression, Planta, vol.21, issue.2, pp.297-312, 2016.
DOI : 10.1016/j.cub.2011.03.048

U. Hoecker, The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling, Current Opinion in Plant Biology, vol.37, pp.63-72, 2017.
DOI : 10.1016/j.pbi.2017.03.015

N. Ordonez-herrera, P. Fackendahl, X. Yu, S. Schaefer, C. Koncz et al., A cop1 spa Mutant Deficient in COP1 and SPA Proteins Reveals Partial Co-Action of COP1 and??SPA during Arabidopsis Post-Embryonic Development and Photomorphogenesis, Molecular Plant, vol.8, issue.3, pp.479-81, 2015.
DOI : 10.1016/j.molp.2014.11.026

S. Laubinger, K. Fittinghoff, and U. Hoecker, The SPA Quartet: A Family of WD-Repeat Proteins with a Central Role in Suppression of Photomorphogenesis in Arabidopsis, THE PLANT CELL ONLINE, vol.16, issue.9, pp.2293-306, 2004.
DOI : 10.1105/tpc.104.024216

X. Deng, C. T. Quail, and P. , cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis., Genes & Development, vol.5, issue.7, pp.1172-82, 1991.
DOI : 10.1101/gad.5.7.1172

V. Arnim, A. Deng, and X. , Light inactivation of arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning, Cell, vol.79, issue.6, pp.1035-1080, 1994.
DOI : 10.1016/0092-8674(94)90034-5

M. Pacin, M. Legris, and J. Casal, Rapid Decline in Nuclear COSTITUTIVE PHOTOMORPHOGENESIS1 Abundance Anticipates the Stabilization of Its Target ELONGATED HYPOCOTYL5 in the Light, PLANT PHYSIOLOGY, vol.164, issue.3, pp.1134-1142, 2014.
DOI : 10.1104/pp.113.234245

D. Sheerin, C. Menon, S. Zur-oven-krockhaus, B. Enderle, L. Zhu et al., Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex, The Plant Cell Online, vol.27, issue.1, pp.189-201, 2015.
DOI : 10.1105/tpc.114.134775

X. Lu, C. Zhou, P. Xu, Q. Luo, H. Lian et al., Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1???SPA1 Dissociation and Photomorphogenic Development in Arabidopsis, Molecular Plant, vol.8, issue.3, pp.467-78, 2015.
DOI : 10.1016/j.molp.2014.11.025

S. Chen, N. Lory, J. Stauber, and U. Hoecker, Photoreceptor specificity in the light-induced and COP1-medi- ated rapid degradation of the repressor of photomorphogenesis SPA2 in Arabidopsis, PLOS Genetics, vol.11, p.26368289, 2015.

M. Balcerowicz, K. Fittinghoff, L. Wirthmueller, A. Maier, P. Fackendahl et al., Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2, The Plant Journal, vol.20, issue.5, pp.712-735, 2011.
DOI : 10.1105/tpc.107.056580

G. Weidler, Z. Oven-krockhaus, S. Heunemann, M. Orth, C. Schleifenbaum et al., CRY2 Is Regulated by SPA Proteins and Phytochrome A, The Plant Cell, vol.24, issue.6, pp.2610-2633, 2012.
DOI : 10.1105/tpc.112.098210

URL : http://www.plantcell.org/content/plantcell/24/6/2610.full.pdf

H. Wang, L. Ma, J. Li, H. Zhao, and X. Deng, Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development, Science, vol.294, issue.5540, pp.154-162, 2001.
DOI : 10.1126/science.1063630

H. Yang, R. Tang, and A. Cashmore, The Signaling Mechanism of Arabidopsis CRY1 Involves Direct Interaction with COP1, THE PLANT CELL ONLINE, vol.13, issue.12, pp.2573-87, 2001.
DOI : 10.1105/tpc.13.12.2573

M. Balcerowicz, K. Kerner, C. Schenkel, and U. Hoecker, SPA Proteins Affect the Subcellular Localization of COP1 in the COP1/SPA Ubiquitin Ligase Complex during Photomorphogenesis, Plant Physiology, vol.174, issue.3
DOI : 10.1104/pp.17.00488

A. Oravecz, A. Baumann, Z. Mate, A. Brzezinska, J. Molinier et al., CONSTITUTIVELY PHOTOMORPHOGENIC1 Is Required for the UV-B Response in Arabidopsis, THE PLANT CELL ONLINE, vol.18, issue.8, pp.1975-90, 2006.
DOI : 10.1105/tpc.105.040097

C. Subramanian, J. Woo, X. Cai, X. Xu, S. Servick et al., A suite of tools and application notes for in vivo protein interaction assays using bioluminescence resonance energy transfer

U. Hoecker and P. Quail, The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis, J Biol Chem, vol.276, pp.38173-38181, 2001.

Y. Saijo, J. Sullivan, H. Wang, Y. J. Shen, Y. Rubio et al., The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity, Genes & Development, vol.17, issue.21, pp.2642-2649, 2003.
DOI : 10.1101/gad.1122903

D. Zhu, A. Maier, J. Lee, S. Laubinger, Y. Saijo et al., Biochemical Characterization of Arabidopsis Complexes Containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA Proteins in Light Control of Plant Development, THE PLANT CELL ONLINE, vol.20, issue.9, pp.2307-2330, 2008.
DOI : 10.1105/tpc.107.056580

X. Holtkotte, S. Dieterle, L. Kokkelink, O. Artz, L. Leson et al., Mutations in the N-terminal kinase-like domain of the repressor of photomorphogenesis SPA1 severely impair SPA1 function but not light responsiveness in Arabidopsis, The Plant Journal, vol.21, issue.2, pp.205-223, 2016.
DOI : 10.1016/j.cub.2011.03.048

URL : https://hal.archives-ouvertes.fr/hal-01545365

K. Fittinghoff, S. Laubinger, M. Nixdorf, P. Fackendahl, R. Baumgardt et al., genes during seedling photomorphogenesis and adult growth, The Plant Journal, vol.128, issue.4, pp.577-90, 2006.
DOI : 10.1002/352760510X

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2006.02812.x/pdf

R. Baumgardt, K. Oliverio, J. Casal, and U. Hoecker, SPA1, a component of phytochrome A signal transduction, regulates the light signaling current, Planta, vol.215, issue.5, pp.745-53, 2002.
DOI : 10.1007/s00425-002-0801-x

C. Lin, M. Ahmad, D. Gordon, and A. Cashmore, Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light., Proceedings of the National Academy of Sciences, vol.92, issue.18, pp.8423-8430, 1995.
DOI : 10.1073/pnas.92.18.8423

M. Ahmad, J. Jarillo, and A. Cashmore, Chimeric Proteins between cry1 and cry2 Arabidopsis Blue Light Photoreceptors Indicate Overlapping Functions and Varying Protein Stability, The Plant Cell, vol.10, issue.2, pp.197-207, 1998.
DOI : 10.2307/3870698