B. M. Lunde, C. Moore, and G. Varani, RNA-binding proteins: modular design for efficient function, Nature Reviews Molecular Cell Biology, vol.13, issue.6, pp.479-90, 2007.
DOI : 10.1128/MCB.18.4.2282

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507177/pdf

C. D. Cukier and A. Ramos, Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR, European Biophysics Journal, vol.16, issue.12, pp.1317-1342, 2011.
DOI : 10.1038/nsmb.1545

URL : https://link.springer.com/content/pdf/10.1007%2Fs00249-011-0698-z.pdf

C. D. Mackereth and M. Sattler, Dynamics in multi-domain protein recognition of RNA, Current Opinion in Structural Biology, vol.22, issue.3, pp.287-296, 2012.
DOI : 10.1016/j.sbi.2012.03.013

L. Martino, Synergic interplay of the La motif, RRM1 and the interdomain linker of LARP6 in the recognition of collagen mRNA expands the RNA binding repertoire of the La module, Nucleic Acids Research, vol.43, issue.1, pp.645-660, 2015.
DOI : 10.1093/nar/gku1287

E. Michel and F. H. Allain, Selective Amino Acid Segmental Labeling of Multi-Domain Proteins, Methods Enzymol, vol.doi, p.28, 2015.
DOI : 10.1016/bs.mie.2015.05.028

D. A. Stetsenko and M. J. Gait, Efficient Conjugation of Peptides to Oligonucleotides by ???Native Ligation???, The Journal of Organic Chemistry, vol.65, issue.16, pp.4900-4908, 2000.
DOI : 10.1021/jo000214z

P. E. Dawson, T. W. Muir, I. Clark-lewis, and S. B. Kent, Synthesis of proteins by native chemical ligation, Science, vol.266, issue.5186, pp.776-785, 1994.
DOI : 10.1126/science.7973629

T. W. Muir, D. Sondhi, and P. A. Cole, Expressed protein ligation: A general method for protein engineering, Proc. Natl. Acad. Sci. USA. 95, pp.6705-6710, 1998.
DOI : 10.1074/jbc.272.41.25429

URL : http://www.pnas.org/content/95/12/6705.full.pdf

H. Wu, Z. Hu, and X. Liu, Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803, PCC6803. Proc. Natl. Acad. Sci. USA 95, pp.9226-9257, 1998.
DOI : 10.1073/pnas.95.7.3543

T. Yamazaki, Segmental Isotope Labeling for Protein NMR Using Peptide Splicing, Journal of the American Chemical Society, vol.120, issue.22, pp.5591-5592, 1998.
DOI : 10.1021/ja980776o

Z. Machova, V. Eggelkraut-gottanka, R. Wehofsky, N. Bordusa, F. Beck-sickinger et al., Expressed Enzymatic Ligation for the Semisynthesis of Chemically ModifiedProteins. Angew. Chemie -Int, pp.4916-4918, 2003.

G. K. Nguyen, Butelase-mediated cyclization and ligation of peptides and proteins, Nature Protocols, vol.11, issue.10, 1977.
DOI : 10.1016/S0958-1669(99)00003-8

R. Yang, Engineering a Catalytically Efficient Recombinant Protein Ligase, Journal of the American Chemical Society, vol.139, issue.15, pp.5351-5358, 2017.
DOI : 10.1021/jacs.6b12637

H. Mao, . Hart, . Sa, A. Schink, and . Pollok, Sortase-Mediated Protein Ligation:?? A New Method for Protein Engineering, Journal of the American Chemical Society, vol.126, issue.9, pp.2670-2671, 2004.
DOI : 10.1021/ja039915e

L. Freiburger, Efficient segmental isotope labeling of multi-domain proteins using Sortase A, Journal of Biomolecular NMR, vol.23, issue.1, pp.1-8, 2015.
DOI : 10.1038/nbt1097

S. B. Kent, Total chemical synthesis of proteins, Chem. Soc. Rev., vol.8, issue.2, pp.338-351, 2009.
DOI : 10.1002/cbic.200700404

U. K. Blaschke, J. Silberstein, and T. W. Muir, [29] Protein engineering by expressed protein ligation, Methods Enzym, vol.328, pp.478-496, 2000.
DOI : 10.1016/S0076-6879(00)28414-0

G. Volkmann and H. Iwaï, Protein trans-splicing and its use in structural biology: opportunities and limitations, Molecular BioSystems, vol.19, issue.11, pp.2110-2121, 2010.
DOI : 10.1039/c0mb00034e

C. Ludwig, Semisynthesis of proteins using split inteins, Methods in enzymology, vol.462, 2009.
DOI : 10.1016/s0076-6879(09)62004-8

F. Burlina, G. Papageorgiou, C. Morris, P. D. White, and J. Offer, Insitu thioester formation for protein ligation using ??-methylcysteine, Chem. Sci., vol.2, issue.2, pp.766-770, 2014.
DOI : 10.1039/c39950002209

I. Díaz-moreno, Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets, Nucleic Acids Research, vol.38, issue.15, pp.5193-5205, 2010.
DOI : 10.1093/nar/gkq216

D. Hollingworth, KH domains with impaired nucleic acid binding as a tool for functional analysis, Nucleic Acids Research, vol.40, issue.14, pp.6873-6886, 2012.
DOI : 10.1093/nar/gks368

URL : https://academic.oup.com/nar/article-pdf/40/14/6873/16967082/gks368.pdf

B. C. Mackness, M. T. Tran, S. P. Mcclain, C. R. Matthews, and J. A. Zitzewitz, Folding of the RNA Recognition Motif (RRM) Domains of the Amyotrophic Lateral Sclerosis (ALS)-linked Protein TDP-43 Reveals an Intermediate State, Journal of Biological Chemistry, vol.1832, issue.12, pp.8264-8276, 2014.
DOI : 10.1093/hmg/ddt296

L. Skrisovska and F. H. Allain, Improved Segmental Isotope Labeling Methods for the NMR Study of Multidomain or Large Proteins: Application to the RRMs of Npl3p and hnRNP L, Journal of Molecular Biology, vol.375, issue.1, pp.151-64, 2008.
DOI : 10.1016/j.jmb.2007.09.030

P. Briata, KSRP, many functions for a single protein, Frontiers in Bioscience, vol.16, issue.1, pp.1787-1796, 2011.
DOI : 10.2741/3821

R. Gherzi, A KH Domain RNA Binding Protein, KSRP, Promotes ARE-Directed mRNA Turnover by Recruiting the Degradation Machinery, Molecular Cell, vol.14, issue.5, pp.571-83, 2004.
DOI : 10.1016/j.molcel.2004.05.002

M. Trabucchi, The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, vol.5, issue.5, pp.1010-1014, 2009.
DOI : 10.1007/BF00197809

T. M. Hackeng, J. H. Griffin, and P. Dawson, Protein synthesis by native chemical ligation: Expanded scope by using straightforward methodology, Proc. Natl. Acad. Sci. USA 96, pp.10068-73, 1999.
DOI : 10.1126/science.274.5287.546

URL : http://www.pnas.org/content/96/18/10068.full.pdf

E. Welker and H. A. Scheraga, Use of Benzyl Mercaptan for Direct Preparation of Long Polypeptide Benzylthio Esters as Substrates of Subtiligase, Biochemical and Biophysical Research Communications, vol.254, issue.1, pp.147-51, 1999.
DOI : 10.1006/bbrc.1998.9913

R. Raz, HF-Free Boc synthesis of peptide thioesters for ligation and cyclization. Angew. Chemie -Int, pp.13174-13179, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371556

E. C. Johnson and S. B. Kent, Insights into the Mechanism and Catalysis of the Native Chemical Ligation Reaction, Journal of the American Chemical Society, vol.128, issue.20, pp.6640-6646, 2006.
DOI : 10.1021/ja058344i

P. E. Dawson, M. J. Churchill, M. R. Ghadiri, and S. B. Kent, Modulation of Reactivity in Native Chemical Ligation through the Use of Thiol Additives, Journal of the American Chemical Society, vol.119, issue.19, pp.4325-4329, 1997.
DOI : 10.1021/ja962656r

E. Michel, L. Skrisovska, K. Wüthrich, and F. H. Allain, Amino Acid-Selective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology, ChemBioChem, vol.23, issue.4, pp.457-466, 2013.
DOI : 10.1017/S0033583500005515

F. Delaglio, NMRPipe: A multidimensional spectral processing system based on UNIX pipes, Journal of Biomolecular NMR, vol.6, issue.3, pp.277-293, 1995.
DOI : 10.1007/BF00197809

E. F. Pettersen, UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1617, 2004.
DOI : 10.1002/jcc.20084

URL : http://www.cgl.ucsf.edu/home/tef/pubs/chimera.pdf

L. E. Kay, D. A. Torchia, and A. Bax, Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease, Biochemistry, vol.28, issue.23, pp.8972-8979, 1989.
DOI : 10.1021/bi00449a003

M. F. García-mayoral, I. Díaz-moreno, D. Hollingworth, and A. Ramos, The sequence selectivity of KSRP explains its flexibility in the recognition of the RNA targets, Nucleic Acids Research, vol.36, issue.16, pp.5290-5296, 2008.
DOI : 10.1093/nar/gkn509