D. 'evelyn, M. P. Nelson, M. M. Engel, and T. , Kinetics of the adsorption of O2 and of the desorption of SiO on Si(100): A molecular beam, XPS, and ISS study, Surface Science, vol.186, issue.1-2, pp.75-114, 1987.
DOI : 10.1016/S0039-6028(87)80037-7

J. R. Engstrom, D. J. Bonser, M. M. Nelson, and T. Engel, The reaction of atomic oxygen with Si(100) and Si(111), Surface Science, vol.256, issue.3, pp.317-343, 1991.
DOI : 10.1016/0039-6028(91)90875-S

U. Memmert and L. Y. Ming, Comparison between Si(100) and Si(111) in the reaction with oxygen at high temperatures, Surf. Sci, vol.245, pp.185-189, 1991.

M. Raschke, P. Bratu, and U. Höfer, Optical second-harmonic investigations of the isothermal desorption of SiO from the Si(100) and Si(111) surfaces, Surface Science, vol.410, issue.2-3, pp.351-361, 1998.
DOI : 10.1016/S0039-6028(98)00389-6

I. Kinefuchi, H. Yamaguchi, Y. Sakiyama, and Y. Matsumoto, Molecular Beam Study on Oxidation of Si(l 00) Surface with Ozone, Rarefied Gas Dynamics: 25th International symposium on Rarefied Gas Dynamics Siberian Branch of the Russian Academy of Sciences, pp.1325-1330, 2007.

I. Kinefuchi, H. Yamaguchi, Y. Sakiyama, S. Takagi, and . Matsumoto, Thermal Decomposition Process of Ultrathin Oxide Layers on Si(100), Thermal Decomposition Process of Ultrathin Oxide Layers on Si, pp.537-542, 2008.
DOI : 10.1380/jsssj.29.537

I. Kinefuchi, H. Yamaguchi, Y. Sakiyama, S. Takagi, and Y. Matsumoto, Inhomogeneous decomposition of ultrathin oxide films on Si(100): Application of Avrami kinetics to thermal desorption spectra, The Journal of Chemical Physics, vol.128, issue.16, p.164712, 2008.
DOI : 10.1063/1.1456036

R. Tromp, G. Rubloff, P. Balk, F. Legoues, and E. J. Van-loenen, /Si Interface, High-temperature SiO 2 decomposition at the SiO 2 /Si interface, pp.2332-2335, 1985.
DOI : 10.1149/1.2129579

K. Johnson and T. Engel, Direct measurement of reaction kinetics for the decomposition of ultrathin oxide on Si(001) using scanning tunneling microscopy, Physical Review Letters, vol.9, issue.2, pp.339-342, 1992.
DOI : 10.1116/1.585547

K. E. Johnson, P. K. Wu, M. Sander, and T. Engel, The mesoscopic and microscopic structural consequences from decomposition and desorption of ultrathin oxide layers on Si(100) studied by scanning tunneling microscopy, Surface Science, vol.290, issue.3, pp.213-231, 1993.
DOI : 10.1016/0039-6028(93)90705-O

Y. Wei, R. M. Wallace, and A. C. Seabaugh, Void formation on ultrathin thermal silicon oxide films on the Si(100) surface, Applied Physics Letters, vol.46, issue.9, p.1270, 1996.
DOI : 10.1063/1.117388

H. Watanabe, K. Fujita, and M. Ichikawa, Thermal decomposition of ultrathin oxide layers on Si(111) surfaces mediated by surface Si transport, Applied Physics Letters, vol.70, issue.9, p.1095, 1997.
DOI : 10.1116/1.577937

H. Hibino, M. Uematsu, and Y. Watanabe, Void growth during thermal decomposition of silicon oxide layers studied by low-energy electron microscopy, Journal of Applied Physics, vol.100, issue.11, p.113519, 2006.
DOI : 10.1103/PhysRevB.47.13432

Y. Enta, K. Ogawa, and T. Nagai, Void and Nanostructure Formations during Thermal Decomposition of 20-nm-Thick Silicon Oxide Layer on Si(100), Japanese Journal of Applied Physics, vol.52, issue.3R, p.31303, 2013.
DOI : 10.7567/JJAP.52.031303

Y. Enta, T. Nagai, T. Yoshida, N. Ujiie, and H. Nakazawa, Decomposition kinetics of silicon oxide layers on silicon substrates during annealing in vacuum, Journal of Applied Physics, vol.114, issue.11, p.114104, 2013.
DOI : 10.1088/0022-3727/14/10/003

K. Xue, J. B. Xu, and H. P. Ho, investigation of ultrathin silicon oxide thermal decomposition by high temperature scanning tunneling microscopy, Nanotechnology, vol.18, issue.48, p.485709, 2007.
DOI : 10.1088/0957-4484/18/48/485709

Y. Enta, S. Osanai, and T. Ogasawara, Activation energy of thermal desorption of silicon oxide layers on silicon substrates, Surface Science, vol.656, pp.96-100, 2017.
DOI : 10.1016/j.susc.2016.10.007

T. Uchiyama, T. Uda, and K. Terakura, Desorption of SiO molecule from the Si(100) surface, Surface Science, vol.474, issue.1-3, pp.21-27, 2001.
DOI : 10.1016/S0039-6028(00)00979-1

C. H. Choi, D. Liu, J. W. Evans, and M. S. Gordon, Passive and Active Oxidation of Si(100) by Atomic Oxygen:?? A Theoretical Study of Possible Reaction Mechanisms, Journal of the American Chemical Society, vol.124, issue.29, pp.8730-8740, 2002.
DOI : 10.1021/ja012454h

A. Hemeryck, N. Richard, A. Estève, and M. Djafari-rouhani, Active oxidation: Silicon etching and oxide decomposition basic mechanisms using density functional theory, Surface Science, vol.601, issue.9, pp.2082-2088, 2007.
DOI : 10.1016/j.susc.2007.03.008

URL : https://hal.archives-ouvertes.fr/hal-01575520

P. Arora, Diffusion of Atomic Oxygen on the Si(100) Surface, The Journal of Physical Chemistry C, vol.114, issue.29, pp.12649-12658, 2010.
DOI : 10.1021/jp102998y

A. Ishizaka, Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE, Journal of The Electrochemical Society, vol.133, issue.4, p.666, 1986.
DOI : 10.1149/1.2108651

URL : http://jes.ecsdl.org/content/133/4/666.full.pdf

H. Takahashi, Annealing-time dependence in interfacial reaction between poly-Si electrode and HfO2???Si gate stack studied by synchrotron radiation photoemission and x-ray absorption spectroscopy, Applied Physics Letters, vol.43, issue.1, p.12102, 2006.
DOI : 10.1149/1.1604115

Y. Enta, S. Osanai, and T. Yoshida, layer on Si(100) during thermal decomposition, Japanese Journal of Applied Physics, vol.55, issue.2, p.28004, 2016.
DOI : 10.7567/JJAP.55.028004

Y. Cui and C. M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, vol.291, issue.5505, pp.851-854, 2001.
DOI : 10.1126/science.291.5505.851

Y. Yang, A. Shalav, T. Kim, and R. G. Elliman, The effect of annealing temperature, residual O2 partial pressure, and ambient flow rate on the growth of SiO x nanowires, Applied Physics A, vol.20, issue.11, pp.885-890, 2012.
DOI : 10.1557/JMR.2005.0368

S. Johnson, A. Markwitz, M. Rudolphi, and H. Baumann, Nanostructuring of silicon (100) using electron beam rapid thermal annealing, Journal of Applied Physics, vol.54, issue.1, pp.605-609, 2004.
DOI : 10.1103/PhysRevLett.82.980

F. Fang and A. Markwitz, Controlled fabrication of Si nanostructures by high vacuum electron beam annealing, Physica E: Low-dimensional Systems and Nanostructures, vol.41, issue.10, pp.1853-1858, 2009.
DOI : 10.1016/j.physe.2009.02.024

A. Iraji-zad, N. Taghavinia, M. Ahadian, and A. Mashaei, Thermal desorption of ultrathin silicon oxide layers on Si(111), Semiconductor Science and Technology, vol.15, issue.2, pp.160-163, 2000.
DOI : 10.1088/0268-1242/15/2/314

J. L. Taylor and W. H. Weinberg, A method for assessing the coverage dependence of kinetic parameters: Application to carbon monoxide desorption from iridium (110), Surface Science, vol.78, issue.2, pp.259-273, 1978.
DOI : 10.1016/0039-6028(78)90080-8

A. Khawam and D. R. Flanagan, Solid-State Kinetic Models:?? Basics and Mathematical Fundamentals, The Journal of Physical Chemistry B, vol.110, issue.35, pp.17315-17343, 2006.
DOI : 10.1021/jp062746a

J. B. Miller, Extraction of kinetic parameters in temperature programmed desorption: A comparison of methods, The Journal of Chemical Physics, vol.87, issue.11, p.6725, 1987.
DOI : 10.1063/1.451411

D. L. Nieskens, A. P. Van-bavel, and J. W. Niemantsverdriet, The analysis of temperature programmed desorption experiments of systems with lateral interactions; implications of the compensation effect, Surface Science, vol.546, issue.2-3, pp.159-169, 2003.
DOI : 10.1016/j.susc.2003.09.035

M. Avrami, Kinetics of Phase Change. I General Theory, The Journal of Chemical Physics, vol.22, issue.12, p.1103, 1939.
DOI : 10.1002/zaac.19332140411

M. Avrami, Kinetics of Phase Change. II Transformation???Time Relations for Random Distribution of Nuclei, The Journal of Chemical Physics, vol.90, issue.2, p.212, 1940.
DOI : 10.1007/BF01341256

M. Avrami and . Granulation, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, The Journal of Chemical Physics, vol.8, issue.2, p.177, 1941.
DOI : 10.1063/1.1750386

M. Fanfoni and M. Tomellini, The Johnson-Mehl- Avrami-Kohnogorov model: A brief review, Il Nuovo Cimento D, vol.373, issue.7-8, pp.1171-1182, 1998.
DOI : 10.1557/PROC-398-425

J. Farjas and P. Roura, Modification of the Kolmogorov???Johnson???Mehl???Avrami rate equation for non-isothermal experiments and its analytical solution, Acta Materialia, vol.54, issue.20, pp.5573-5579, 2006.
DOI : 10.1016/j.actamat.2006.07.037

N. Bergeard, Time-resolved photoelectron spectroscopy using synchrotron radiation time structure, Journal of Synchrotron Radiation, vol.70, issue.503, pp.245-250, 2011.
DOI : 10.1103/PhysRevB.70.233106

F. Himpsel, F. Mcfeely, A. Taleb-ibrahimi, J. Yarmoff, and G. Hollinger, /Si interface, Microscopic structure of the SiO 2 /Si interface, pp.6084-6096, 1988.
DOI : 10.1063/1.332319

F. Rochet, Suboxides at the Si/SiO2 interface: a Si2p core level study with synchrotron radiation, Journal of Non-Crystalline Solids, vol.216, pp.148-155, 1997.
DOI : 10.1016/S0022-3093(97)00181-6

F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Taleb-ibrahimi, Oxidized silicon surfaces studied by high resolution Si 2p core-level photoelectron spectroscopy using synchrotron radiation, Journal of Non-Crystalline Solids, vol.280, issue.1-3, pp.150-155, 2001.
DOI : 10.1016/S0022-3093(00)00370-7

L. Lay and G. , Surface core-level shifts of Si(111)7??7: A fundamental reassessment, Physical Review B, vol.1, issue.270, pp.14277-14282, 1994.
DOI : 10.1016/0168-583X(84)90482-8

S. Yamamoto and I. Matsuda, Time-Resolved Photoelectron Spectroscopies Using Synchrotron Radiation: Past, Present, and Future, Journal of the Physical Society of Japan, vol.82, issue.2, p.21003, 2013.
DOI : 10.7566/JPSJ.82.021003

URL : http://journals.jps.jp/doi/pdf/10.7566/JPSJ.82.021003

S. Lizzit and A. Baraldi, High-resolution fast X-ray photoelectron spectroscopy study of ethylene interaction with Ir(111): From chemisorption to dissociation and graphene formation, Catalysis Today, vol.154, issue.1-2, pp.68-74, 2010.
DOI : 10.1016/j.cattod.2010.05.028

A. Nambu, An ultrahigh-speed one-dimensional detector for use in synchrotron radiation spectroscopy: first photoemission results, Journal of Electron Spectroscopy and Related Phenomena, vol.137, issue.140, pp.691-697, 2004.
DOI : 10.1016/j.elspec.2004.02.156

URL : http://www.physics.ucdavis.edu/fadleygroup/Detector.1st3papers.preprints.pdf

P. A. Bennett and M. W. Webb, The Si(111) 7 ?? 7 TO ???1 ?? 1??? transition, Surface Science, vol.104, issue.1, pp.74-104, 1981.
DOI : 10.1016/0039-6028(81)90125-4

W. Telieps and E. Bauer, The (7 ?? 7) ??? (1 ?? 1) phase transition on Si(111), Surface Science, vol.162, issue.1-3, pp.163-168, 1985.
DOI : 10.1016/0039-6028(85)90890-8

J. E. Kruse, -masked Si (111) substrates by molecular beam epitaxy, Journal of Applied Physics, vol.119, issue.22, p.224305, 2016.
DOI : 10.1063/1.4871782

W. Zhao, Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy, Applied Surface Science, vol.392, pp.1043-1048, 2017.
DOI : 10.1016/j.apsusc.2016.09.081

J. I. Flege, Ultrathin, epitaxial cerium dioxide on silicon, Applied Physics Letters, vol.104, issue.13, p.131604, 2014.
DOI : 10.1063/1.1356451

G. Hollinger and F. Himpsel, Multiple-bonding configurations for oxygen on silicon surfaces, Physical Review B, vol.29, issue.6, pp.3651-3653, 1983.
DOI : 10.1007/BF00617767

F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Taleb-ibrahimi, Oxidized silicon surfaces studied by high resolution Si 2p core-level photoelectron spectroscopy using synchrotron radiation, Journal of Non-Crystalline Solids, vol.280, issue.1-3, 2001.
DOI : 10.1016/S0022-3093(00)00370-7

C. Karlsson, E. Landemark, Y. Chao, and R. Uhrberg, core-level spectra of the Si(111)7??7 surface, Physical Review B, vol.68, issue.8, pp.5767-5770, 1994.
DOI : 10.1103/PhysRevLett.68.1351

U. Gelius, A high resolution multipurpose ESCA instrument with X-ray monochromator, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.1, issue.1, pp.85-117, 1984.
DOI : 10.1016/0168-583X(84)90482-8

G. Hollinger, Oxygen chemisorption and oxide formation on Si(111) and Si(100) surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.1, issue.2, p.640, 1983.
DOI : 10.1116/1.572199

I. Ohdomari, T. Watanabe, K. Kumamoto, and T. Hoshino, Consideration of atom movement during Si surface reconstruction, Phase Transitions, vol.62, issue.4, pp.245-258, 1997.
DOI : 10.1103/PhysRevB.36.6209

J. J. Paggel, Correlation of surface core levels and structural building blocks for the Si(111)-7??7 reconstruction through high-resolution core-level spectroscopy, Physical Review B, vol.57, issue.24, pp.18686-18689, 1994.
DOI : 10.1103/PhysRevLett.57.1020

U. Höfer, L. Li, G. A. Ratzlaff, and T. Heinz, Nonlinear optical study of the Si(111)7??7 to 1??1 phase transition: Superheating and the nature of the 1??1 phase, Physical Review B, vol.323, issue.7, pp.5264-5268, 1995.
DOI : 10.1016/0039-6028(94)00711-X

I. ?tich, M. C. Payne, R. D. King-smith, J. Lin, and L. J. Clarke, total-energy calculations for extremely large systems: Application to the Takayanagi reconstruction of Si(111), Physical Review Letters, vol.56, issue.9, pp.1351-1354, 1992.
DOI : 10.1103/PhysRevLett.56.1972

R. S. Becker, J. A. Golovchenko, G. S. Higashi, and . Swartzentruber, New Reconstructions on Silicon (111) Surfaces, Physical Review Letters, vol.31, issue.8, pp.1020-1023, 1986.
DOI : 10.1103/PhysRevB.32.8455

R. Zhachuk, S. Teys, and J. Coutinho, Strain-induced structure transformations on Si(111) and Ge(111) surfaces: A combined density-functional and scanning tunneling microscopy study, The Journal of Chemical Physics, vol.1, issue.22, p.224702, 2013.
DOI : 10.1134/S1063783409010259

S. Frank and P. A. Rikvold, Kinetic Monte Carlo simulations of electrodeposition: Crossover from continuous to instantaneous homogeneous nucleation within Avrami???s law, Surface Science, vol.600, issue.12, pp.2470-2487, 2006.
DOI : 10.1016/j.susc.2006.03.042

URL : http://arxiv.org/pdf/cond-mat/0601447

F. Polack, Progress report and first results of new Super-ACO beamlines, Proceedings of SPIE -The International Society for Optical Engineering 3450, 1998.
DOI : 10.1117/12.323409

N. T. Kinahan, Surface, Physical Review Letters, vol.104, issue.14, p.146101, 2010.
DOI : 10.1103/PhysRevB.43.4263

K. Sakamoto, H. M. Zhang, and R. I. Uhrberg, surface: Reinterpretation of the initial oxidation process, Physical Review B, vol.65, issue.358, p.75302, 2003.
DOI : 10.1103/PhysRevB.65.155305

K. Sakamoto, H. M. Zhang, and R. I. Uhrberg, surface, Physical Review B, vol.65, issue.354, p.35301, 2004.
DOI : 10.1016/0039-6028(85)90753-8

URL : https://hal.archives-ouvertes.fr/hal-00477313

J. C. Moore, J. L. Skrobiszewski, and A. A. Baski, Sublimation behavior of SiO2 from low- and high-index silicon surfaces, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.25, issue.4, p.812, 2007.
DOI : 10.1116/1.2748798