N. Lopes-dos-santos and E. G. Nov, Diagnosis: With characters of the family Additional characters; cell wall thick and smooth or sometimes with fibrils, string like ornamentation Etymology: Named for its green color and small size Type species: Chloroparvula pacifica Chloroparvula pacifica Lopes dos Santos, Noël and Eikrem sp. nov. Diagnosis: With characters of genus with loroxanthin absent Combined nucleotide sequences of nuclear 18S rRNA (KU843574), rRNA ITS (MF077486) and plastid 16S rRNA (KU843560) are species specific. Holotype: Cells embedded in resin block deposited at the Natural History Museum, University of Oslo, accession number O-A-10007. Figure 3D shows cells from the resin block. Original culture deposited in NIES Microbial Culture Collection as NIES-3669; sub-culture deposited in Roscoff Culture Collection as RCC4656 Etymology: Named for its abundance in the Pacific Ocean. Chloroparvula japonica Lopes dos Santos, Noël and Eikrem sp. nov. Diagnosis: With characters of genus Additional characters; combined nucleotide sequences of nuclear 18S rRNA, Type locality: NIES-3669 (RCC4656) was isolated from a surface water sample collected from the North Pacific Ocean off Japan (42°16? N, 145°07? E) rRNA ITS (MF077482) and plastid 16S rRNA (LN735350) are species specific. Holotype: Cells embedded in resin block deposited at the Natural History Museum10008. Figure 3F shows cell from the resin block. Original culture deposited in NIES Microbial Culture Collection as NIES-2758; sub-culture deposited in Roscoff Culture Collection as RCC2339. Type locality: NIES-2758 (RCC2339) was isolated in surface from the North Pacific Ocean off the coast of Japan (33° 46? N, 129° 41? E)

P. Eikrem, L. , S. Nov-picocystis, and R. A. Lewin, Diagnosis: With characters of order Additional characters; coccoid cells contain green chloroplasts with starch grain Characters of type species Picocystis salinarum Picocystis salinarum R.A. Lewin emend. Eikrem and Lopes dos Santos Diagnosis: Cells measuring 2-3 µm with 1-2 chloroplasts, a mitochondrion and dictyosome. Combined nucleotide sequences of nuclear 18S rRNA (FR865649), rRNA ITS (HE610138, MF077484) and plastid 16S rRNA (AB491631) are species specific.Paratype: Cells embedded in resin block deposited at the Natural History Museum, 10009. Supplement figure 2A shows cell from embedding. Original Culture CCMP1897 deposited in Roscoff Culture Collection as RCC3402.Type locality: Pacific ocean (37°47?N, 122°21?W)

R. 1. Tragin, M. L. Santos, A. Christen, R. Vaulot, and D. , Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences, Perspectives in Phycology, vol.3, issue.3, pp.141-154, 2016.
DOI : 10.1127/pip/2016/0059

F. Leliaert, Phylogeny and Molecular Evolution of the Green Algae, Critical Reviews in Plant Sciences, vol.45, issue.1, pp.1-46, 2012.
DOI : 10.1111/j.1529-8817.2009.00731.x

URL : https://hal.archives-ouvertes.fr/hal-01590252

F. Leliaert, H. Verbruggen, and F. W. Zechman, Into the deep: New discoveries at the base of the green plant phylogeny, BioEssays, vol.124, issue.9, pp.683-692, 2011.
DOI : 10.1007/s10265-010-0349-y

L. Guillou, Diversity of Picoplanktonic Prasinophytes Assessed by Direct Nuclear SSU rDNA Sequencing of Environmental Samples and Novel Isolates Retrieved from Oceanic and Coastal Marine Ecosystems, Protist, vol.155, issue.2, pp.193-214, 2004.
DOI : 10.1078/143446104774199592

R. A. Lewin, L. Krienltz, R. G. Oerickei, H. Takeda, and D. Hepperle, Picocystis salinarum gen. et sp. nov. (Chlorophyta) ??? a new picoplanktonic green alga, Phycologia, vol.39, issue.6, pp.560-565, 2000.
DOI : 10.2216/i0031-8884-39-6-560.1

C. S. Roesler, strain ML in Mono Lake, California, Limnology and Oceanography, vol.47, issue.2, pp.440-452, 2002.
DOI : 10.4319/lo.2002.47.2.0440

L. Krienitz, C. Bock, K. Kotut, and W. Luo, Picocystis salinarum (Chlorophyta) in saline lakes and hot springs of East Africa, Phycologia, vol.51, issue.1, pp.22-32, 2012.
DOI : 10.2216/11-28.1

A. Lopes-dos-santos, P. Gourvil, F. Rodriguez-hernandez, J. L. Garrido, and D. Vaulot, Photosynthetic pigments of oceanic Chlorophyta belonging to prasinophytes clade VII, Journal of Phycology, vol.195, issue.1, pp.148-155, 2016.
DOI : 10.3354/meps195029

URL : https://hal.archives-ouvertes.fr/hal-01258694

A. Lopes-dos-santos, Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters, The ISME Journal, vol.1, issue.2, pp.512-528, 2017.
DOI : 10.1111/j.1365-294X.2011.05362.x

B. Marin and M. Melkonian, Molecular Phylogeny and Classification of the Mamiellophyceae class. nov. (Chlorophyta) based on Sequence Comparisons of the Nuclear- and Plastid-encoded rRNA Operons, Protist, vol.161, issue.2, pp.304-336, 2010.
DOI : 10.1016/j.protis.2009.10.002

B. Marin, Nested in the Chlorellales or Independent Class? Phylogeny and Classification of the Pedinophyceae (Viridiplantae) Revealed by Molecular Phylogenetic Analyses of Complete Nuclear and Plastid-encoded rRNA Operons, Protist, vol.163, issue.5, pp.778-805, 2012.
DOI : 10.1016/j.protis.2011.11.004

C. Lemieux, C. Otis, and M. Turmel, Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species, BMC Genomics, vol.15, issue.1, p.857, 2014.
DOI : 10.1093/bioinformatics/btl446

S. Y. Moon-van-der-staay, R. De-wachter, and D. Vaulot, Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity, Nature, vol.22, issue.6820, pp.607-610, 2001.
DOI : 10.1093/nar/22.22.4673

X. L. Shi, D. Marie, L. Jardillier, D. J. Scanlan, and D. Vaulot, Groups without Cultured Representatives Dominate Eukaryotic Picophytoplankton in the Oligotrophic South East Pacific Ocean, PLoS ONE, vol.150, issue.10, 2009.
DOI : 10.1371/journal.pone.0007657.s003

URL : https://hal.archives-ouvertes.fr/hal-01254027

M. Viprey, L. Guillou, M. Ferréol, and D. Vaulot, Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach, Environmental Microbiology, vol.49, issue.7, pp.1804-1822, 2008.
DOI : 10.1016/S0967-0637(98)00015-6

W. Wu, B. Huang, Y. Liao, and P. Sun, Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea, FEMS Microbiology Ecology, vol.89, issue.3, pp.563-579, 2014.
DOI : 10.1111/1574-6941.12357

K. Romari and D. Vaulot, Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences, Limnology and Oceanography, vol.49, issue.3, pp.784-798, 2004.
DOI : 10.4319/lo.2004.49.3.0784

D. Potter, T. C. Lajeunesse, G. W. Saunders, and R. A. Andersen, Convergent evolution masks extensive biodiversity among marine coccoid picoplankton, Biodiversity and Conservation, vol.6, issue.1, pp.99-107, 1997.
DOI : 10.1023/A:1018379716868

F. Leliaert, DNA-based species delimitation in algae, European Journal of Phycology, vol.24, issue.2, pp.179-196, 2014.
DOI : 10.1080/09670260500254743

URL : http://www.tandfonline.com/doi/pdf/10.1080/09670262.2014.904524?needAccess=true

J. C. Mai and A. W. Coleman, The Internal Transcribed Spacer 2 Exhibits a Common Secondary Structure in Green Algae and Flowering Plants, Journal of Molecular Evolution, vol.44, issue.3, pp.258-271, 1997.
DOI : 10.1007/PL00006143

A. W. Coleman, The Significance of a Coincidence between Evolutionary Landmarks Found in Mating Affinity and a DNA Sequence, Protist, vol.151, issue.1, pp.1-9, 2000.
DOI : 10.1078/1434-4610-00002

A. W. Coleman, Is there a molecular key to the level of ???biological species??? in eukaryotes? A DNA guide, Molecular Phylogenetics and Evolution, vol.50, issue.1, pp.197-203, 2009.
DOI : 10.1016/j.ympev.2008.10.008

N. Joseph, E. Krauskopf, M. I. Vera, and B. Michot, Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast, Nucleic Acids Research, vol.27, issue.23, pp.4533-4540, 1999.
DOI : 10.1093/nar/27.23.4533

G. Pöll, rRNA Maturation in Yeast Cells Depleted of Large Ribosomal Subunit Proteins, PLoS ONE, vol.4, issue.12, 2009.
DOI : 10.1371/journal.pone.0008249.s004

S. Schillewaert, L. Wacheul, F. Lhomme, and D. L. Lafontaine, The Evolutionarily Conserved Protein LAS1 Is Required for Pre-rRNA Processing at Both Ends of ITS2, Molecular and Cellular Biology, vol.32, issue.2, pp.430-444, 2012.
DOI : 10.1128/MCB.06019-11

T. Müller, N. Philippi, T. Dandekar, J. Schultz, and M. Wolf, Distinguishing species, RNA, vol.13, issue.9, pp.1469-1472, 2007.
DOI : 10.1261/rna.617107

R. R. Guillard and P. Hargraves, Stichochrysis immobilis is a diatom, not a chrysophyte, Phycologia, vol.32, issue.3, pp.234-236, 1993.
DOI : 10.2216/i0031-8884-32-3-234.1

T. Okaichi, S. Nishio, and Y. Imatomi, Toxic phytoplankton -occurrence, mode of action and toxins, pp.23-34, 1982.

M. Zapata, F. Rodriguez, and J. L. Garrido, Separation of chlorophylls and carotenoids from marine phytoplankton:a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases, Marine Ecology Progress Series, vol.195, pp.29-45, 2000.
DOI : 10.3354/meps195029

J. L. Garrido, F. Rodríguez, and M. Zapata, SPECIES (PRASINOPHYCEAE, CHLOROPHYTA), Journal of Phycology, vol.38, issue.2, pp.366-374, 2009.
DOI : 10.1016/B978-012370518-1/50014-X

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-82, 2012.
DOI : 10.1093/bioinformatics/btr390

D. Marie, N. Simon, L. Guillou, F. Partensky, D. Vaulot et al., DNA/RNA Analysis of Phytoplankton by Flow Cytometry, Curr. Protoc. Cytom. Chapter, vol.63, p.12, 2001.
DOI : 10.4319/lo.1998.43.8.1916

C. Lepère, Whole-genome amplification (WGA) of marine photosynthetic eukaryote populations, FEMS Microbiology Ecology, vol.76, issue.3, pp.516-523, 2011.
DOI : 10.1111/j.1574-6941.2011.01072.x

T. J. White, T. Bruns, S. Lee, and J. Taylor, In PCR protocols: a guide to methods and applications, pp.315-322, 1990.
DOI : 10.1385/0896032442

N. J. West, Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides, Microbiology, vol.147, issue.7, pp.1731-1744, 2001.
DOI : 10.1099/00221287-147-7-1731

N. J. Fuller, Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids, Aquatic Microbial Ecology, vol.43, pp.79-93, 2006.
DOI : 10.3354/ame043079

N. J. Fuller, Molecular analysis of photosynthetic picoeukaryote community structure along an Arabian Sea transect, Limnology and Oceanography, vol.51, issue.6, pp.2502-2514, 2006.
DOI : 10.4319/lo.2006.51.6.2502

URL : http://onlinelibrary.wiley.com/doi/10.4319/lo.2006.51.6.2502/pdf

A. Keller, 8S?28S rRNA interaction and HMM-based ITS2 annotation, Gene, vol.5, issue.430, pp.50-57, 2009.
DOI : 10.1016/j.gene.2008.10.012

M. J. Ankenbrand, A. Keller, M. Wolf, J. Schultz, and F. Föster, ITS2 Database V: Twice as Much: Table 1., Molecular Biology and Evolution, vol.32, issue.11, pp.3030-3032, 2015.
DOI : 10.1093/molbev/msv174

URL : https://academic.oup.com/mbe/article-pdf/32/11/3030/13166368/msv174.pdf

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

URL : https://academic.oup.com/nar/article-pdf/31/13/3406/9487491/gkg595.pdf

A. W. Coleman, ITS2 is a double-edged tool for eukaryote evolutionary comparisons, Trends in Genetics, vol.19, issue.7, pp.370-375, 2003.
DOI : 10.1016/S0168-9525(03)00118-5

A. W. Coleman, Pan-eukaryote ITS2 homologies revealed by RNA secondary structure, Nucleic Acids Research, vol.35, issue.10, pp.3322-3329, 2007.
DOI : 10.1093/nar/gkm233

URL : https://academic.oup.com/nar/article-pdf/35/10/3322/16762977/gkm233.pdf

P. N. Seibel, T. Müller, T. Dandekar, J. Schultz, and M. Wolf, 4SALE?a tool for synchronous RNA sequence and secondary structure alignment and editing, BMC Bioinformatics, vol.7, issue.1, p.498, 2006.
DOI : 10.1186/1471-2105-7-498

URL : https://doi.org/10.1186/1756-0500-1-91

P. Seibel, T. Müller, T. Dandekar, and M. Wolf, Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE, BMC Research Notes, vol.1, issue.1, p.91, 2008.
DOI : 10.1186/1756-0500-1-91

URL : https://doi.org/10.1186/1756-0500-1-91

L. Caisová, B. Marin, and M. Melkonian, A Consensus Secondary Structure of ITS2 in the Chlorophyta Identified by Phylogenetic Reconstruction, Protist, vol.164, issue.4, pp.482-496, 2013.
DOI : 10.1016/j.protis.2013.04.005

M. Kearse, Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, vol.28, issue.12, pp.1647-1649, 2012.
DOI : 10.1093/bioinformatics/bts199

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Research, vol.30, issue.14, pp.3059-3066, 2002.
DOI : 10.1093/nar/gkf436

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2729, 2013.
DOI : 10.1093/molbev/mst197

URL : https://academic.oup.com/mbe/article-pdf/30/12/2725/19498310/mst197.pdf

S. Guindon, J. Dufayard, V. Lefort, and M. Anisimova, New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0, Systematic Biology, vol.59, issue.3, pp.307-321, 2010.
DOI : 10.1093/sysbio/syq010

URL : https://hal.archives-ouvertes.fr/lirmm-00511784

F. Ronquist and J. P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, vol.19, issue.12, pp.1572-1574, 2003.
DOI : 10.1093/bioinformatics/btg180

URL : https://academic.oup.com/bioinformatics/article-pdf/19/12/1572/715881/btg180.pdf

P. J. Keeling, The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing, PLoS Biology, vol.9, issue.6, p.1001889, 2014.
DOI : 10.1371/journal.pbio.1001889.s001

URL : https://hal.archives-ouvertes.fr/hal-01109521

R. Schmieder, Y. W. Lim, and R. Edwards, Identification and removal of ribosomal RNA sequences from metatranscriptomes, Bioinformatics, vol.28, issue.3, pp.433-435, 2012.
DOI : 10.1093/bioinformatics/btr669

E. Pruesse, SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Research, vol.35, issue.21, pp.7188-7196, 2007.
DOI : 10.1093/nar/gkm864

URL : https://academic.oup.com/nar/article-pdf/35/21/7188/7041501/gkm864.pdf

M. G. Grabherr, Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nature Biotechnology, vol.30, issue.7, pp.644-652, 2011.
DOI : 10.1101/GR.229202. ARTICLE PUBLISHED ONLINE BEFORE MARCH 2002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571712/pdf

C. Trapnell, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology, vol.25, issue.5, pp.511-515, 2010.
DOI : 10.1093/bioinformatics/btp352

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3146043/pdf

B. Li and C. N. Dewey, RSEM, BMC Bioinformatics, vol.12, p.323, 2011.
DOI : 10.1201/b16589-5

G. Parra, K. Bradnam, and I. Korf, CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes, Bioinformatics, vol.23, issue.9, pp.1061-1067, 2007.
DOI : 10.1093/bioinformatics/btm071

S. A. Goff, The iPlant Collaborative: Cyberinfrastructure for Plant Biology, Frontiers in Plant Science, vol.2, p.34, 2011.
DOI : 10.3389/fpls.2011.00034

URL : https://doi.org/10.3389/fpls.2011.00034

R. L. Tatusov, The COG database: an updated version includes eukaryotes, BMC Bioinformatics, vol.4, issue.1, p.41, 2003.
DOI : 10.1186/1471-2105-4-41

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, ProtTest 3: fast selection of best-fit models of protein evolution, Bioinformatics, vol.27, issue.8, pp.1164-1165, 2011.
DOI : 10.1093/bioinformatics/btr088

J. P. Huelsenbeck, F. Ronquist, and . Mrbayes, MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, vol.17, issue.8, pp.754-755, 2001.
DOI : 10.1093/bioinformatics/17.8.754

URL : https://academic.oup.com/bioinformatics/article-pdf/17/8/754/8201380/170754.pdf

E. Derelle, Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features, Proc. Natl. Acad. Sci. USA 103, pp.11647-11652, 2006.
DOI : 10.1126/science.1095781

URL : https://hal.archives-ouvertes.fr/hal-00164247

A. Z. Worden, Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas, Science, vol.178, issue.4, pp.268-272, 2009.
DOI : 10.1534/genetics.108.087205

URL : https://hal.archives-ouvertes.fr/hal-00693449

H. Moreau, Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage, Genome Biology, vol.13, issue.8, p.74, 2012.
DOI : 10.1126/science.1188800

L. Subirana, Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae), Protist, vol.164, issue.5, pp.643-659, 2013.
DOI : 10.1016/j.protis.2013.06.002

URL : https://hal.archives-ouvertes.fr/hal-01004323

B. Wang, A. Zarka, A. Trebst, and S. Boussiba, ASTAXANTHIN ACCUMULATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) AS AN ACTIVE PHOTOPROTECTIVE PROCESS UNDER HIGH IRRADIANCE1, Journal of Phycology, vol.39, issue.6, pp.1116-1124, 2003.
DOI : 10.1111/j.0022-3646.2003.03-043.x

S. W. Jeffrey, S. W. Wright, M. Zapata, S. Roy, E. Egeland et al., In Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography, pp.3-77, 2011.

F. Rodríguez, Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae), Environmental Microbiology, vol.59, issue.6, pp.853-859, 2005.
DOI : 10.1128/jb.175.22.7189-7199.1993

M. Latasa, R. Scharek, L. Gall, F. Guillou, and L. , PIGMENT SUITES AND TAXONOMIC GROUPS IN PRASINOPHYCEAE, Journal of Phycology, vol.40, issue.6, pp.1149-1155, 2004.
DOI : 10.1007/978-1-4615-8714-9_3

S. Takaichi, Carotenoids in Algae: Distributions, Biosyntheses and Functions, Marine Drugs, vol.126, issue.12, pp.1101-1118, 2011.
DOI : 10.1111/j.1399-3054.2006.00613.x

URL : http://www.mdpi.com/1660-3397/9/6/1101/pdf

C. Crespo, H. Rodríguez, P. Segade, R. Iglesias, and J. M. García-estévez, Coccomyxa sp. (Chlorophyta: Chlorococcales), a new pathogen in mussels (Mytilus galloprovincialis) of Vigo estuary (Galicia, NW Spain), Journal of Invertebrate Pathology, vol.102, issue.3, pp.214-219, 2009.
DOI : 10.1016/j.jip.2009.08.010

P. Jahns, D. Latowski, and K. Strzalka, Mechanism and regulation of the violaxanthin cycle: The role of antenna proteins and membrane lipids, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1787, issue.1, pp.3-14, 2009.
DOI : 10.1016/j.bbabio.2008.09.013

C. Lemieux, C. Otis, and M. Turmel, Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae, BMC Evolutionary Biology, vol.17, issue.4, p.211, 2014.
DOI : 10.1093/oxfordjournals.molbev.a026334

URL : https://bmcevolbiol.biomedcentral.com/track/pdf/10.1186/s12862-014-0211-2?site=bmcevolbiol.biomedcentral.com

F. Leliaert, Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci. Rep, vol.6, p.25367, 2016.

D. Marie, L. Gall, F. Edern, R. Gourvil, P. Vaulot et al., Improvement of phytoplankton culture isolation using single cell sorting by flow cytometry, Journal of Phycology, vol.29, issue.2, pp.271-282, 2017.
DOI : 10.1093/plankt/fbl059

URL : https://hal.archives-ouvertes.fr/hal-01408856

N. Simon, of the type species M. pusilla (Butcher) Manton & Parke and of the species M. commoda (van Baren, Bacry and Worden) and description of two new species based on the genetic and phenotypic characterization of cultured isolates, Manton et Parke) (Chlorophyta, Mamiellophyceae), 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614739

J. Schultz, S. Maisel, D. Gerlach, T. Müller, and M. Wolf, A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota, RNA, vol.11, issue.4, pp.361-364, 2005.
DOI : 10.1261/rna.7204505

L. Caisová, B. Marin, and M. Melkonian, A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae), BMC Evolutionary Biology, vol.156, issue.4, p.262, 2011.
DOI : 10.1016/j.protis.2005.09.001

I. Kaczmarska, L. Mather, I. Aluddington, F. Muise, and J. M. Ehrman, Cryptic diversity in a cosmopolitan diatom known as Asterionellopsis glacialis (Fragilariaceae): Implications for ecology, biogeography, and taxonomy, American Journal of Botany, vol.101, issue.2, pp.267-286, 2014.
DOI : 10.3732/ajb.1300306

T. Nakayama, The Basal Position of Scaly Green Flagellates among the Green Algae (Chlorophyta) is Revealed by Analyses of Nuclear-Encoded SSU rRNA Sequences, Protist, vol.149, issue.4, pp.367-80, 1998.
DOI : 10.1016/S1434-4610(98)70043-4

N. P. Massjuk, Chlorodendrophyceae class. nov. (Chlorophyta, Viridiplantae) in the Ukrainian flora: I. The volume, phylogenetic relations and taxonomical status, Ukr. Bot. J, vol.63, pp.601-6014, 2006.

R. R. Guillard, M. D. Keller, C. J. O-'kelly, and G. L. Floyd, PYCNOCOCCUS PROVASOLII GEN. ET SP. NOV., A COCCOID PRASINOXANTHIN-CONTAINING PHYTOPLANKTER FROM THE WESTERN NORTH ATLANTIC AND GULF OF MEXICO1, Journal of Phycology, vol.23, issue.2A, pp.39-47, 1991.
DOI : 10.1111/j.1529-8817.1987.tb04141.x

F. Jouenne, W. Eikrem, L. Gall, F. Johnsen, G. Vaulot et al., Prasinoderma singularis sp. nov. (Prasinophyceae, Chlorophyta), a Solitary Coccoid Prasinophyte from the South-East Pacific Ocean, Protist, vol.162, issue.1, pp.70-84, 2011.
DOI : 10.1016/j.protis.2010.04.005

URL : https://hal.archives-ouvertes.fr/hal-01254007

M. W. Fawley, M. Qin, and Y. Yun, THE RELATIONSHIP BETWEEN PSEUDOSCOURFIELDIA MARINA AND PYCNOCOCCUS PROVASOLII (PRASINOPHYCEAE, CHLOROPHYTA): EVIDENCE FROM 18S rDNA SEQUENCE DATA, Journal of Phycology, vol.35, issue.4, pp.838-843, 1999.
DOI : 10.1046/j.1529-8817.1999.3540838.x

W. J. Henley, Phylogenetic analysis of the ???Nannochloris-like??? algae and diagnoses of Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), Phycologia, vol.43, issue.6, pp.641-652, 2004.
DOI : 10.2216/i0031-8884-43-6-641.1

S. Balzano, species complex, Journal of Phycology, vol.52, issue.4, pp.161-187, 2017.
DOI : 10.1016/j.femsec.2004.10.006

URL : https://hal.archives-ouvertes.fr/hal-01404481

I. Percopo, complex, Journal of Phycology, vol.11, issue.2, pp.184-199, 2016.
DOI : 10.1007/978-94-011-4485-8_2

URL : https://hal.archives-ouvertes.fr/hal-01404481

R. Rodríguez-martínez, G. Rocap, R. Logares, S. Romac, and R. Massana, Low Evolutionary Diversification in a Widespread and Abundant Uncultured Protist (MAST-4), Molecular Biology and Evolution, vol.29, issue.5, pp.1393-1406, 2012.
DOI : 10.1093/molbev/msr303