O. I. Aruoma and B. Halliwell, Molecular Biology of free radicals in human diseases. OICA International, 1998.

K. D. Asmus, A. L. Castelhano, and D. Griller, Stabilization of oxidized sulfur centers in organic sulfides. Radical cations and odd-electron sulfur-sulfur bonds, and references therein. 3. Asmus, K. D. Sulphenic and derivatives-569, and references therein. 5. Chatgilialoglu, pp.436-442, 1979.
DOI : 10.1021/ar50144a003

D. Armstrong and K. Bobrowski, Thermochemistry of Sulfur Radicals Intramolecular hydrogen-transfer as the key step in the dissociation of hydroxyl radical adducts of (alkylthio)ethanol derivatives, J. Am. Chem. Soc, vol.7, issue.115, pp.6538-6547, 1993.

P. H. Wine, A mechanistic study of the reaction of OH with dimethyl-d(6) sulfide -direct observation of adduct formation and the kinetics of the adduct reaction with O-2 Kinetics and mechanism of oh reactions with organic sulfides, and references therein. 10. Baird, N. C., 3-electron bond, pp.16967-16975, 1977.

O. Mozziconacci, J. Mirkowski, F. Rusconi, G. Kciuk, P. B. Wisniowski et al., OH-Induced Oxidation of Enkephalins, The Journal of Physical Chemistry B, vol.116, issue.41, pp.12460-12472, 2012.
DOI : 10.1021/jp307043q

D. Scuderi, J. Bergès, P. De-oliveira, C. Houée-levin, J. Bergès et al., Methionine one-electron oxidation: Coherent contributions from radiolysis, IRMPD spectroscopy, DFT calculations and electrochemistry, Cost Chemistry Cm0603-Melusyn Joint Meeting: Damages Induced in Biomolecules by Low and High Energy Radiations understanding the protein oxidation processes: (OH)-O addition on tyrosine, phenylalanine, or methionine, pp.103-111, 2011.
DOI : 10.1016/j.radphyschem.2016.05.007

URL : https://hal.archives-ouvertes.fr/hal-01320731

J. Pilmé, E. Luppi, J. Bergès, C. Houée-levin, A. De-la-lande et al., Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin Toward an understanding of the oxidation process of methionine enkephalin: A combined electrochemistry, Page 19 of 32 ACS Paragon Plus Environment The Journal of Physical Chemistry quantum chemistry and quantum chemical topology analysis Oxidation mechanism of methionine by HO radical: A theoretical study OH oxidation toward S-and OH-containing amino acids, J. Mol. Model. 2014 J. Phys. Chem.B J. Phys. Chem.B Uranga, J.; Mujika, J. I.; Matxain, J. M. J. Phys. Chem.B, vol.20, issue.119, pp.2368-2385, 2012.

C. Xipsiti and A. V. Nicolaides, A computational study on the possible role of oxygen in the oxidation of methionine and dimethylsulfide initiated by OH radicals, Computational and Theoretical Chemistry, vol.1009, pp.24-29, 2013.
DOI : 10.1016/j.comptc.2012.12.020

T. Clark, P. M. Gill, L. Radom, S. Hazebroucq, and P. C. Hiberty, Odd-electron .sigma. bonds, Journal of the American Chemical Society, vol.110, issue.6, pp.1672-1678, 1988.
DOI : 10.1021/ja00214a003

B. Braïda, L. Thogersen, W. Wu, P. C. Hiberty, H. Chevreau et al., Stability, Metastability, and Unstability of Three-Electron-Bonded Radical Anions. A Model ab Initio Theoretical Study, Hiberty, P. C., A simplified Gaussian-2 scheme for determining electron affinities of covalent bonds. Application to the disulfide bond RS-SR ' (R, pp.11781-11790, 2002.
DOI : 10.1021/ja026707y

I. Fourré and B. Silvi, What can we learn from two-center three-electron bonding with the topological analysis of ELF? Heteroat. Chem Asymmetry and electronegativity in the electron capture activation of the Se-Se bond: sigma(star)(Se-Se) vs sigma(star)(Se-X), J. Chem. Theory. Comput, vol.18, issue.6, pp.135-160, 2007.

J. Gamez, S. Aa-=-o, S. Dumont, E. Loos, P. F. Assfeld et al., Te) or How electrostatic interactions influence the nature of the chemical bond Effect of ring strain on disulfide electron attachment How does microhydration impact on structure, spectroscopy and formation of disulfide radical anions? An ab initio investigation on dimethyldisulfide Intersulfur distance is a key factor in tuning disulfide radical anion vertical UV-visible absorption Superior performance of range-separated hybrid functionals for describing sigma* <-sigma UV-vis signatures of three-electron two-center anions, J. Chem. Theory. Comput. Chem. Phys. Lett. Chem. Phys. Lett. J. Phys. Chem. Lett. J. Phys. Chem. A, vol.2013, issue.116, pp.5211-5215, 2008.

I. Fourré and J. Bergès, Structural and Topological Characterization of the Three-Electron Bond:?? The SO Radicals, The Journal of Physical Chemistry A, vol.108, issue.5, pp.898-906, 2004.
DOI : 10.1021/jp030915a

I. Fourré, J. Bergès, B. Braïda, and C. Houée-levin, Topological and spectroscopic study of three-electron bonded compounds as models of radical cations of methionine-containing dipeptides, Chemical Physics Letters, vol.467, issue.1-3, pp.164-169, 2008.
DOI : 10.1016/j.cplett.2008.11.012

A. D. Becke and K. E. Edgecombe, A Simple measure of electron localization in atomic and molecular-systems ELF: The electron localization function, J. Chem. Phys. Angew. Chem., Int. Ed, vol.92, issue.36, pp.5397-5403, 1990.

B. Silvi, The Spin-Pair Compositions as Local Indicators of the Nature of the Bonding, The Journal of Physical Chemistry A, vol.107, issue.17, pp.3081-3085, 2003.
DOI : 10.1021/jp027284p

B. Silvi and A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions, Nature, vol.371, issue.6499, pp.683-686, 1994.
DOI : 10.1038/371683a0

S. B. Barone, A. A. Turnipseed, A. R. Ravishankara, J. W. Chu, B. R. Brooks et al., Reaction of OH with dimethyl sulfide (DMS) .1. Equilibrium constant for OH+DMS reaction and the kinetics of the OH DMS+O-2 reaction Oxidation of methionine residues in aqueous solutions: Free methionine and methionine in granulocyte colony-stimulating factor On the mechanisms of oxidation of organic sulfides by H2O2 in aqueous solutions The elusive dimethylhydroxysulfuranyl radical -an intermediate or a transition-state Photoinduced electrontransfer between sulfur-containing carboxylic-acids and the 4-carboxybenzophenone triplet-state in aqueous-solution, J. Phys. Chem. J. Am. Chem. Soc. Chu, J. W.; Trout, B. L. J. Am. Chem. Soc. J. Am. Chem. Soc. Marciniak, B.; Bobrowski, K.; Hug, G. L.; Rozwadowski, J. J. Phys. Chem, vol.100, issue.98, pp.14694-14702, 1992.

M. L. Mckee, Computational study of addition and abstraction reactions between hydroxyl radical and dimethyl sulfide: a difficult case, The Journal of Physical Chemistry, vol.97, issue.42, pp.10971-10976, 1993.
DOI : 10.1021/j100144a013

F. Turecek, The Dimethylsulfide-Hydroxyl Radical Reaction. An ab Initio Study, The Journal of Physical Chemistry, vol.98, issue.14
DOI : 10.1021/j100065a027

C. Turnipseed, A. A. Barone, S. B. Ravishankara, A. R. Wang, L. M. Zhang et al., Reaction of OH with dimethyl sulfide .2. Products and mechanisms Addition complexes of dimethyl sulfide (DMS) and OH radical and their reactions with O-2 by ab initio and density functional theory Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 1. Direct observations of the formation of the OH-DMS adduct-pressure dependence of the forward rate of addition and development of a predictive expression at low temperature, J. Phys. Chem. J. Mol. Struct.: Theochem J. Phys. Chem.A, vol.98, issue.111, pp.3701-3706, 1994.

S. Antonczak, M. F. Ruiz-lopez, and J. L. Rivail, Ab Initio Analysis of Water-Assisted Reaction Mechanisms in Amide Hydrolysis, Journal of the American Chemical Society, vol.116, issue.9, pp.3912-3921, 1994.
DOI : 10.1021/ja00088a030

D. Jacquemin, C. Michaux, E. A. Perpète, and G. Frison, Comparison of Microhydration Methods: Protonated Glycine as a Working Example, The Journal of Physical Chemistry B, vol.115, issue.13, pp.3604-3613, 2011.
DOI : 10.1021/jp200139q

URL : https://hal.archives-ouvertes.fr/hal-00575354

C. Michaux, J. Wouters, D. Jacquemin, E. A. Perpète, E. A. Perpète et al., A theoretical investigation of the hydrated glycine cation energetics and structures Modeling the microhydration of protonated alanine Microhydration of protonated glycine: An ab initio family tree Hydration structure and water exchange reaction of nickel(II) ion: Classical and QM/MM simulations Structure and dynamics of solvated Sn(II) in aqueous solution: An ab initio QM/MM MD approach Simulations of liquids and solutions based on quantum mechanical forces Combining implicit solvation models with hybrid quantum mechanical/molecular mechanical methods: A critical test with glycine The mechanism of formamide hydrolysis in water from ab initio calculations and simulations, Advances in Inorganic Chemistry: Theoretical and Computational Inorganic Chemistry, pp.57-61, 2002.

X. J. Meng, H. L. Zhao, and X. S. Ju, Influences of n (2???5) water molecules on the proton transfer in hydrated glycine complexes, Computational and Theoretical Chemistry, vol.1001, pp.26-32, 2012.
DOI : 10.1016/j.comptc.2012.10.012

R. B. Sunoj, M. Anand, B. Yogeswari, R. Kanakaraju, A. Abiram et al., Microsolvated transition state models for improved insight into chemical properties and reaction mechanisms Molecular dynamics and quantum chemical studies on incremental solvation of glycine Quantum mechanical continuum solvation models, Phys. Chem. Chem. Phys. 2012 Comput. Theor. Chem. Tomasi, J.; Mennucci, B, vol.14, issue.967, pp.12715-12736, 2009.

B. Braïda, P. C. Hiberty, and A. Savin, A Systematic Failing of Current Density Functionals:?? Overestimation of Two-Center Three-Electron Bonding Energies, The Journal of Physical Chemistry A, vol.102, issue.40, pp.7872-7877, 1998.
DOI : 10.1021/jp982441z

P. C. Hiberty, S. Humbel, C. P. Byrman, and J. H. Vanlenthe, and FH, The Journal of Chemical Physics, vol.6, issue.7
DOI : 10.1063/1.455702

. P. Chem, P. C. Hiberty, and S. Shaik, Breathing-orbital valence bond method -a modern valence bond method that includes dynamic correlation Official web site for the code XMVB, Theor. Chem. Acc, vol.101, issue.70, pp.5969-5976, 1994.

L. C. Mo, Y. R. Zhang, Q. N. Wu, W. Zhang, and Q. , A program for ab initio nonorthogonal valence bond computations Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method, J. Comput. Chem. J. Chem. Phys, vol.26, issue.138, pp.514-521, 2005.

S. Antonczak, M. Ruizlopez, J. L. Rivail, P. C. Hiberty, and L. Pauling, The hydrolysis mechanism of formamide revisited: Comparison between ab initio, semiempirical and DFT results Diatomic halogen anions and related three-electron-bonded anion radicals: Very contrasted performances of Møller-Plesset methods in symmetric vs dissymmetric cases, Symmetry-breaking and near-symmetrybreaking in three-electron-bonded radical cations The nature of the chemical bond. II. The one-electron bond and the threeelectron bond, J. Mol. Model. Braïda, B J. Phys. Chem. A Braïda, B J. Chem. Phys. J. Am. Chem. Soc, vol.3, issue.53, pp.434-442, 1931.

B. Braïda, D. H. Ess, S. Shaik, D. Danovich, B. Braïda et al., Protonated alcohols are examples of complete charge-shift bonds New landscape of electronpair bonding: Covalent, ionic, and charge-shift bonds Charge-shift bonding and its manifestations in chemistry, Chemical Bond II: 100 Years Old and Getting Stronger, pp.9998-10001, 2009.