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Abstract
Wedevelop the full counting statistics of dissipated heat to explore the relationwith Landauer’s
principle. Combining the two-timemeasurement protocol for the reconstruction of the statistics of
heat with theminimal set of assumptions for Landauer’s principle to hold, we derive a general one-
parameter family of upper and lower bounds on themean dissipated heat from a system to its
environment. Furthermore, we establish a connectionwith the degree of non-unitality of the system’s
dynamics and show that, if a large deviation function exists as stationary limit of the above cumulant
generating function, then our family of lower and upper bounds can be used towitness and
understand first-order dynamical phase transitions. For the purpose of demonstration, we apply these
bounds to an externally pumped three level system coupled to a finite sized thermal environment.

1. Introduction

In his landmark 1961 paper, Rolf Landauer demonstrated that the heat dissipated in an irreversible
computational processmust always be at least equal to the corresponding information theoretic entropy change
[1]. Amajor implication of Landauer’s principle, which is a fundamental statement on the energetic cost of
information processing, is the resolution ofMaxwell’s daemon paradox [2–7] that lurked in the background of
statisticalmechanics since its inception.

The understanding of how a systemdissipates heat following themanipulation of the information brought
about by its relevant degrees of freedom is important fromboth a fundamental and practical standpoint, in
particular to gauge the energetics and thermodynamics of small classical and quantum systems. In fact, the
miniaturization of technologies has led a significant interest in the thermodynamics of small systems that are
out-of-equilibrium, both from the classical [8, 9] and quantumpoint of view [10–12]. One themost exciting
developments in this line of research is the recent availability of experimental platforms to explore energetic
features of small information processing systems [13–19]. In the quantumdomain, Landauer’s principle has
been studied extensively [20–26], and the first experiments addressing the energetic costs of information
processing are just coming along [27–30]. The ultimate limit of information-to-energy conversion set by
Landauer’s principle, includingfinite-size corrections due to the finite-size nature of the environment being
addressed [31, 32], was reached in anNMR setup implementing a two-qubit quantumgate [27] and following a
proposal based onmeasuring the firstmoment of the statistics of heat exchanges [33].

Recently, some of us studied a Landauer erasure process from the perspective of the full statistics of
dissipated heat [34], showing that a novel lower bound can be derivedwhich depends on the degree of non-
unitality of the quantumoperation induced on the environment (see relatedworks [35, 36]). In this paper we go
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beyond such an approach and apply the formalismof full counting statistics to dissipated heat in order to derive
a new family of single-parameter lower (and upper) bounds on the average dissipated heat. Such a family of
bounds can bemade arbitrarily tight and does not depend on the details of themap, thusmarking their inherent
difference from the lower bound derived in [34], which is contained in our results as a particular case.We show
how the bounds relate to a large deviation function (LDF), which is typically used for analyzing the long time
statistical properties of a given system [37]. In order to illustrate the behavior of the bounds thus derived, we
make use of an engineered settingwhere a three-level system is coupled to afinite-dimensional thermal
environment.While allowing for the demonstration of the tightness of the bound, such example allows us to
shed light on the occurrence of interesting statistical phenomena such as dynamical phase transitions.

The remainder of the paper is organized as follows. In section 2we detail the formalism applied throughout
this work. In section 3we derive the family of bounds and examine them through a large deviation approach.
Section 4 is dedicated to the behavior of the boundswith respect to a specific physical system. Finally, in section 5
we present our conclusions. Some technical details are outlined in the appendix.

2. Formalism

2.1. Erasure protocol
Consider a system S whose information content wewant to erase bymaking it interact with an environment E.
Following [1, 32], we consider the followingminimal set of assumptions, which ensure the validity of Landauer’s
principle:

1. Both S and E are quantum systems, living inHilbert spacesHS andHE respectively;

2. The initial state of the composite system is factorized, i.e. r r r= Ä( ) ( ) ( )0 0 0SE S E , such that no initial
correlations are present;

3. The environment is prepared in the thermal state r r= =b
b-( ) Z0 eE E

E with E the Hamiltonian of the

environment, whichwe spectrally decompose as = å ñá = å P∣ ∣E E E EE m m m m m m m. Here, ñ∣Em is the
mth eigenstate ofE , associatedwith eigenvalue Em. Finally, we have introduced the partition
function = b-[ ]Z Tr e ;E E

E

4. System and environment interact via the overall unitary transformation = -( )U t e i t with
   = + +S E SE the totalHamiltonian.

Within this framework, which is rather natural, the following equality has been proven [31, 32]

b r r r rá ñ = D + + b( ) ( ( ) ( )) ( ( )∣∣ ) ( )Q S t I t t D t: , 1t S E E

where  r rá ñ º -[ ( ( ) ( ))]Q tTr 0t E E E is themeandissipatedheat, r rD º -( ) ( ( )) ( ( ))S t S S t0S S is the change in
the system’s entropy (with r r rº -( ) [ ]S Tr ln the von-Neumannentropy), r r r rº -b( ( )∣∣ ) [ ( ) ( )]D t t tTr lnE E E

r rb[ ( ) ]tTr lnE is the relative entropybetween the state of the environment at time t and its initial equilibriumstate,
andwhere r r r r rº + -( ( ) ( )) ( ( )) ( ( )) ( ( ))I t t S t S t S t:S E S E SE denotes themutual informationbetweenS andE.
As both the relative entropy and themutual information arenon-negative functions, one is immediately led to the
following lower bound to themeandissipatedheat

b á ñ D ( ) ( )Q S t , 2t

which is thewell-known Landauer’s principle.

2.2. Full counting statistics approach to dissipated heat
We rely on the full counting statistics [10] of the dissipated heat, defined as the change in the environmental
energy [31, 32], in order to characterize itsmean value. The probability distribution, pt(Q), to record a
transferred amount of heatQ can be formally defined in terms of the so-called two-timemeasurement protocol,
introduced in [38] for the sake of determining the distribution of work resulting from a (unitary) perturbation of
a system. In linewith the framework defined above, assume S to be initially uncorrelatedwith E, which is
prepared in an equilibrium state. Therefore r r r= Ä b( ) ( )0 0SE S with  r =b[ ], 0E . A projection over one of
the energy eigenstates of the environment at time t=0 is carried out, obtaining En as an outcome. As a result,
the total S–E state is

r r¢ = Ä P( ) ( ) ( )0 0 . 3SE S n

Immediately after themeasurement, the interaction between S and E is switched on and the overall system
undergoes a joint evolution up to a generic time t, when the interaction is switched off and a second projective

2
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measurement of the environmental energy is performed, this time obtaining an outcome Em. After the second
measurement, we have

r
r

r
 =

P ¢ P

P ¢
( )

( ) ( ) ( )
[ ( ) ( ) ( ) ]

( )
†

†t
U t U t

U t U t

0

Tr 0
. 4SE

m SE m

SE m SE

It is worth stressing that the set of assumptions and steps used in the two-timemeasurement protocol is perfectly
compatible with those required by the erasure process given in section 2.1. The joint probability to have obtained
the two stated outcomes at times 0 and t respectively is given by the Born rule

r r= P P Ä P Pb[ ] [ ( ) ( ) ( ) ] ( )†P E E U t U t, Tr 0 , 5t m n m n S n m

fromwhich the probability distribution pt(Q) follows as

å d= - -( ) ( ( )) [ ] ( )p Q Q E E P E E, . 6t
E E

m n t m n
,n m

We introduce the cumulant generating function defined as the Laplace transformof the probability distribution

òh bQ º á ñ =h h- -( ) ( ) ( )t p Q Q, , ln e ln e d , 7Q
t t

Q

which can be seen as theWick rotated version of the usual definition given by the Fourier transformof pt(Q). The
reason behind this choicewill become clear in the following section. The cumulant of nth-order is simply
obtained by differentiationwith respect to the real parameter η as

h
h bá ñ = -

¶
¶

Q h=( ) ( )∣ ( )Q t1 , , . 8n
t

n
n

n 0

Note that in the definition of the cumulant generating functionwe have explicitly written the dependence on the
inverse temperatureβ of the bath, which enters in the joint probability equation (5) through the initial
environmental state rb . The crucial point in using the full counting statistics approach is that the cumulant
generating function introduced in equation (7) can be expressed as

h b r h bQ =( ) ( [ ( )]) ( )t t, , ln Tr , , , 9S S

where

r h b r r= Äh b h( ) [ ( ) ( ) ( )] ( )†t U t U t, , Tr 0 , 10S E S2 2

with  ºh
h h-( ) ( )( ) ( )U t U te e2

2 2E E. By invoking the same approximations and techniques used to derive a
master equation for the densitymatrix of the system r ( )tS , one can obtain a new equation for r h b( )t, ,S [10].
Solving this is a taskwith the same degree of complexity as accessing the dynamics of the reduced system. Inwhat
follows, we circumvent such a difficulty by deriving a family of bounds, both lower and upper, to á ñQ t using the
counting statistics arising from the two-timemeasurement protocol.

3. Bounds on themean dissipated heat

3.1. Lower bounds
Inorder to derive a lower bound for á ñQ t , we consider the cumulant generating functionof its probability
distribution.Having it defined as in equation (7), we can applyHölder’s inequality to prove that h bQ( )t, , is a
convex functionwith respect to the counting parameterη [39]. This condition canbe equivalently expressed as [37]

h b h
h

h bQ
¶
¶

Q h=( ) ( )∣ ( )t t, , , , . 110

Combining equations (8) and (11), we obtain a one-parameter family of lower bounds for themean dissipated
heat á ñQ t reading

b
b
h

h b há ñ - Q º >h( ) ( ) ( ) ( )Q t t, , 0 . 12t

Equation (12) is valid in the case of a generic erasure protocol and forms a central result of this work.
We now look at the form taken by the bound for h b= and show that the result of [34] emerges. For this

particular value of the counting field parameter, equation (7) reduces to

= á ñb b bQ - ( )( )e e , 13t Q
t

, ,

which can be seen to correspond to the same quantity considered in [34], i.e. the average exponentiated heat. The
bound in [34]was shown to be related to the degree of non-unitality of the quantumoperation acting on the

3
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environment,which governs the evolutionof the environmental state. Theunitality condition canbe expressed as

å =( ) ( ) ( )†A t A t , 14
k

k k E

where lº = á ñ( ) ( ) ∣ ( )∣A t A t i U t jij jk denote theKraus operators for the environment obtained from the
usual evolution operator lñ( ) {∣ }U t j, , j being the eigenstates and eigenvalues of the initial densitymatrix of the
system, i.e. r l= å ñá( ) ∣ ∣j j0S j j . To show this connection, we consider the expression of the cumulant
generating function

   h b rQ = h h h h- -( ) [ ( ) ( ) ( ) ] ( )( ) ( ) ( ) † ( )t U t U t, , lnTr e e 0 e e . 15SE SE
2 2 2 2E E E E

Exploiting the cyclicity of the trace and the condition  r =h
b[ ]( )e , 02 E , it is straightforward to show that the

latter can be equivalently expressed as

h b rQ = b
h( ) [ ( )] ( )t tA, , lnTr 16E

with

rº Äh
b h b h- -( ) [ ( )( ( ) ) ( )] ( )†t U t U tA Tr 0 , 17S S E

where  =b h
h b h b

-
- - -( ) ( )( ) ( )U t U te e2 2E E represents the evolution conditional on the two-timemeasure-

ment of the environmental energy. Equation (16) remarks the role of the h b= choice: for this value of the
counting parameter wefind that the operator defined in equation (17) reduces to

 år= Ä ºb( ) [ ( ) ( ) ( )] ( ) ( ) ( )† †t U t U t A t A tA Tr 0 . 18S S E
k

k k

Now that we have clarified the connection between the one-parameter family of lower bounds obtained in this
work and the bound derived in [34], it is important to clarify the differences between the two techniques and the
obtained results. Despite both approaches taking as a starting point the heat probability distribution pt(Q) given
in equation (6), [34] uses it to directly construct the average exponentiated heat of equation (13), in the same
spirit as Jarzynski for the case of thework probability distribution. This quantity does not allow one to obtain the
moments of the distribution of dissipated heat by differentiation, and only the application of Jensen’s inequality
allows to access the lower bound on themean dissipated heat given in [34]. In our approach, instead one builds
on the cumulant generating function, allowing to obtain both the differentmoments of the distribution,
including in particular themean values, as well as a family of upper and lower bounds to it. This last fact is of
particular relevance in that it paves theway to assess the existence of dynamical phase transitions that will be
explored in the proceeding sections.

In light of equations (12) and (14), one can see that, if the environmentalmap is unital, the new family of
lower bounds vanishes. However, in the erasure-protocol framework considered here the dynamicalmap

r rL b  ( )t:E E is, by construction, non-unital as the dissipative dynamics inevitably perturbs the initial Gibbs
state of the environment in order to erase information stored in the system [34]. In order to relate these concepts
more quantitatively, in section 4we introduce the followingfigure ofmerit, which gives an estimate of the degree
of non-unitality of amap

 = -b ( ) ( ) ( )t tA , 19E E

where · denotes the Frobenius norm.

3.2. Upper bounds and relation to the LDF
Consider now, if it exists, the stationary limit

q h b h bº Q
+¥

( ) ( ) ( )t t, lim , , , 20
t

which is the so-called LDF, a powerful theoretical tool widely employed in literature to access the statistical
properties at long time-scales [37, 40–44].Moreover, the LDF can be associated to a specific evolution in the
space of events, thus being equivalent to a free energy [40]. The usual evolution for h = 0 is called typical, while
for h ¹ 0 is referred to as rare. In particular, discontinuities in q h b( ), correspond to dynamical phase
transitions. The bounds derived in section 2 allows us to have a remarkably clear grasp on the connection
between discontinuities in the LDF and dynamical phase transitions. To show this, consider again the convexity
condition equation (11). If we limit our attention to negative values of the counting parameter η, instead of
equation (12)we obtain an upper bound for the dissipated heat in the form

b
b
h

h b há ñ Q º <h

∣ ∣
( ) ˜ ( ) ( ) ( )Q t t, , 0 . 21t

Clearly, this upper bound has similar properties as the lower bound found above, namely it approaches from
above the curve of the dissipated heat for decreasing values of h∣ ∣. In light of this, it follows that if h = 0 is a

4
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critical point for q h b( ), (provided the long-time limit of equation (20) exists), then the two families

    º ºh h h h

+¥ +¥
( ) ˜ ˜ ( ) ( )b t t b t tlim , lim 22

t t

approach two different curves, and thus provide a clear signature of afirst-order dynamical phase coexistence in
the typical evolution. If the critical point is instead located at some h ¹ 0c itmeans thefirst order phase
transition in the dissipated heat occurs for a rare evolution.

4. Application to a physicalmodel

Herewe study the family of bounds in equation (12) in the context of a physical system consisting of a three level
V-system encoded in the energy levels ñ ñ ñ{∣ ∣ ∣ }0 , 1 , 2S S S of a quantum system, such as infigure 1. There, the
ñ∣0 S− ñ∣1 S transition is pumpedwith a frequency W1, while the transition between ñ∣0 S− ñ∣2 S is dictated by anXX-

type interactionwith the environment,modeled as a two-level system (whose logical states are ñ ñ{∣ ∣ }0 , 1E E ) and
prepared in a thermal state. An externalmagnetic field along the z direction affects both the environment and
the ñ∣0 S− ñ∣2 S transition. Such an effectivemodel can arise considering a three level V-system in the context of
adiabatic elimination [45]. As the interactionwith the environment is excitation-preserving, the coupling
behaves similarly to an amplitude damping channel affecting the ñ∣0 S− ñ∣2 S transition, in fact it can be shown that
the correspondingmap applied to the ñ∣0 S− ñ∣2 S transition is exactly a generalized amplitude damping channel
[34, 46]. Thismodel thus sharesmany features with the one considered in [40], whichwas shown to exhibit a
dynamical phase transition.

Figure 1 shows a schematic of the consideredmodel.Wewill show the relation between the family of bounds
in equation (12), with particular emphasis applied to the special case of h b= , whichmatches the bounds
derived in [34], and the actual dissipated heat.Wewill further show that the tightness of the lower bound can
reveal characteristic features of themodel and clearly explain the dynamics in light of the energy exchanged
between system and environment. Finally, themodel considered provides a benchmark for the case of longer
environmental chains. In fact, as highlighted in [34], the qualitative features of all the quantities of interest are
already efficiently captured by the case of single-spin environment.

4.1. CoupledV-system
The totalHamiltonian is given by    = + + +S E SE SF (where F denotes the laser field), with

*   s s s= - = - = W + W = Ä + Ä+ - ( )BS B S S J S S, , , ,S z E z SF SE x x y y
20

1
10

1
10 20 20

where sx y z, , denote the usual Paulimatrices for the environmental qubit, while Sx y z
j
, ,
0 are theGell-Mannmatrices

º ñá + ñá

º ñá - ñá =

º ñá - ñá

∣ ∣ ∣ ∣
(∣ ∣ ∣ ∣) ( )

∣ ∣ ∣ ∣ ( )

S j j

S i j j j

S j j

0 0 ,

0 0 , 1, 2

0 0 . 23

x
j

y
j

z
j

0

0

0

Finally W1 is the Rabi frequency of the ñ∣0 S− ñ∣1 S transition and =  ( )S S Six y
10 1

2
10 10 . The evolution of the overall

system can be analytically found and the solution, which is detailed in appendix, puts into evidence the

emergence of a typical frequency w = + WJ41
2

1
2 , which plays a crucial role in the determination ofmany

dynamical features, as shown below. Inwhat follows, wewill assume that the initial state is factorized as
r r r= Ä b( ) ( )0 0S , where r = ñ á( ) ∣ ∣0 2 2S S and rb is a thermal state, in accordance with the assumptionsmade
in the erasure protocolmentioned at the beginning of section 2.1.

Figure 1. Scheme of the physical system considered. A three-level V-system is coupled to a two level environment which is at thermal
equilibrium and the ñ∣0 S− ñ∣1 S transition is externally pumped.
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4.2. Behavior of the lower bounds
Moving to the interaction picturewith respect to the freeHamiltonian and employing the rotating-wave
approximation, an analytic expression for the bounds 

h ( )t can be found.However, given their quite
cumbersome nature, we refer the reader to appendix equation (A.5), focusing here only their behavior as a
function of the dimensionless parameter Jt . Infigure 2we (arbitrarily)fix b = 10 and clearly see that, for
decreasing values of the ratio h b , the bound increasingly approaches the actualmean dissipated heat b á ñQ t .
We stress that the red line infigure 2, corresponding to h b= , reproduces the lower bound obtained in [34]. For
larger values of h b , the bound approaches zero.

Infigure 3we show the behavior of the non-unitalitymeasure  ( )tE defined in equation (19) (rescaledwith
β), the dissipated heat, and the lower bound for h b= in the cases of a cold and hot environmental state
(corresponding to b = 10 and b = 1, respectively). Clearly, the zeros andmaxima of the three curves are
attained at the same times. A remarkable feature that occurs infigure 3(a) is the cusp appearing in 

h , when the
dissipated heat ismaximized (the environmental qubit is effectively in the ground state as b = 10). At the cusp,
the bound is as close as possible to the actual dissipated heat. Contrarily, when b = 1, such features are
smoothed out and the dissipated heat is significantly reduced. Furthermore, the bound is now a smoothly
varying function of the dimensionless time, closely tracking the functional formof b á ñQ t and b ( )tE .

This behavior can be explained by studying the populations, r =( )j 0, 1, 2S
jj of theV-system, shown in

figure 4 for the same parameters used infigure 3. Focusing onfigure 4(a), and recalling that we always assume
our system is initialized in r = ñ á( ) ∣ ∣0 2 2S S , we see that as the system evolves the population of the ñ∣2 S state is
completely transferred to the ñ∣0 S state. The point at which both b á ñQ t and 

h aremaximized corresponds

exactly towhen r = 0S
22 . At this point, all of the energy initially contained in the system is ‘dumped’ into the

environmental qubit, whichwas effectively in its ground state initially, and is thus able to absorb and store all of
such energy. For b = 1 (see figure 4(b)), the situation ismarkedly different due to the fact that the environment
is comparatively warm,with a sizeable population initially in the excited state. In this case, the environment is
unable to store all the energy initially in the system. Therefore state ñ∣2 S cannot be depleted fully, and the
dissipated heat is accordingly reduced.

A closer examination of the cusp infigure 3(a) reveals a peculiar feature. By defining

 b= á ñ - h[ ] [ ] ( )Qmax max , 24t

as the difference between themaximumdissipated heat and themaximumof the bound, we find that for the
same parameters infigure 3(a),  = ln 2. Infigure 5we provide a quantitative analysis of equation (24) to
remark the existence of a ‘critical’ pump strength. If the environment is initially cold (i.e. for b = 10) and

W J 21 , wefind that  = ln 2, exactly. This occurs because in this regime state ñ∣2 S can always be fully
emptied. If W > J2 , the pump starts dominating the dynamics. Due to the strong pumping of the ñ∣0 S− ñ∣1 S

transition, some of the population is trapped in the system and ñ∣2 S is never completely empty. This induces a
sudden increase in , due to the fact that, for W >J 21 , the bound is significantly reduced compared to the
dissipated heat. Interestingly, the same qualitative behavior persists evenwhen the environment is initially
warm, i.e. for b = 1. In the inset offigure 5we see that for W J 2,1 is again constant, and only changes
when W >J 21 .

Figure 2.Behavior of the family of lower bounds, 
h , for several values of η,fixing b= = =B J1, 1, 10 and W = 0.11 .We also

show themean dissipated heat b á ñQ t (top-most blue curve) for reference.We remark the red curve at h b= corresponds to the
bound derived in [34].
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4.3.Dissipative regime: upper bounds and LDF
Finally, we examine the behavior in relation to the LDF. An exactmaster equation in the interaction picture
governing the dynamics of theV-system can bewritten. In the case of an initially cold environment (i.e. for
b  +¥), this takes the form

r r

r r

r r

=-

+ -

+ -

- - - -

- - - -

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) [ ˜ ( ) ( )]

( ) ( ) ( ) ( ) { ( ) ( ) ( )}

( ) ( ) ( ) ( ) { ( ) ( ) ( )} ( )

† †

† †

t
t t t

d t G t t G t G t G t t

d t H t t H t H t H t t

d

d
i ,

1

2
,

1

2
, 25

1

2

with = W
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜ ( )t

0 0 0
0 0 1
0 1 0

1 and the parameters

w
w

w w
w w
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= + º + W =
W -
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=
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The Lindblad operators -( )G t and -( )H t are given by the following combinations of lowering operators

=- ñ á + - ñ á

= ñ á + - ñ á

- - -

- + +

( ) ( )∣ ∣ ( ) ∣ ∣

( ) ( )∣ ∣ ( ) ∣ ∣ ( )

G t v t v t

H t v t v t

1 2 i 1 0 2 ,

1 2 i 1 0 2 27

S S

S S

2

2

with = 
 + +

( ) ( )

( )( ( ) ( ) ( ) ) ( )
v t a t

b t b t a t b t a t

2

4 42 2 2
.We stress that both -( )G t and -( )H t are normalized to 1 and

mutually orthogonal with respect to theHilbert–Schmidt product, i.e. =- -[ ( )]†G H tTr 0S . Note that, if we

Figure 3.Mean dissipated heat b á ñQ t (top-most blue curve), rescaled non-unitality b ( )tE (middle, black curve) and the lower
bound 

h for h b= (bottom-most red curve). In both panels, we set = = W =B J 1, 0.11 and take b = 10 b =( )1 in panel (a)
((b)).
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switch off the pump W1, the function a(t) vanishes, while ( ) ( )b t J Jt2 tan 2 , andwe thus get the following
master equation

r s r s s s r= -- + + -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) { ( )} ( )

t
t J Jt t t

d

d
2 tan 2

1

2
, , 2820 20 20 20

which describes an amplitude-damping process involving the ñ∣0 S− ñ∣2 S transition.
Due to thefinite size of the environment, the evolution of the system is periodic.More specifically, note that

equation (25) has the structure of a time-dependent Lindblad form and, although describing a completely-
positive and trace-preserving channel, is not divisible. It thus describes a non-Markovian evolution evenwithin

Figure 4.Dynamics of the populations, rS
00 (dashed, orange), rS

11 (dashed, black), and rS
22 (solid, purple). of the three-level system.

(a) For b= = =B J1, 1, 10 and W = 0.11 . (b)As for the previous panel except b = 1.

Figure 5.Difference, , between themaximumof themean dissipated heat andmaximumof the lower bound 
h for h b= as a

function of the pump frequency W1. Here we take = =J B1, 1, and b = 10. Inset: as formain panel except setting b = 1.
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a single period. Therefore, it is clear that the long-time limit in equation (20) does not exist. For this reason, we
introduce an additional channel in themaster equations of the formgiven by equation (28)with

g( )J Jt2 tan 2 , which describes a decoherent interactionwith an external bosonic fieldwith a
phenomenological damping constant γ. This proves sufficient to guarantee the existence of the LDF q h b( ),
which, when computed by numerical diagonalization, shows a crossover between two dynamical phases at
h = 0 (see figure 6). For h < 0 the LDFbecomes linear in η, while for h > 0 quickly approaches a negative
constant value determined by w1. This result, which indicates a smoothed dynamical phase transition in the first
moment of the dissipated heat, can be explained in the followingway: for h > 0 the three-level system evolves
predominantly in the ñ∣0 S− ñ∣1 S subspace and correspondingly the dissipated heat, which is proportional to the
derivative of the LDF, vanishes; for h < 0, the dynamics involves instead the ñ∣0 S− ñ∣2 S transitionwhich allows
for energy toflow into the environmental spin, therefore leading to a dissipated heat. It is worth pointing out that
the smoothness in the crossover between the two different dynamical phases takes into account the fact that the
ñ∣0 S level is, in the consideredV-structure of the three-level system, shared by the two transitions, this therefore

resulting in a non-vanishing probability to smoothlymove fromone phase to the other due to the external
pump W1. In the limiting case where the laser pump is switched off, i.e. W  01 , the systemundergoes a proper
first-order dynamical phase transition, as reflected in a discontinuity in thefirst derivative of the LDF at the
origin h = 0.

5. Conclusions

Wehavepresented amethod to derive a one-parameter family of Landauer-like bounds for themeandissipated
heat basedon the two-timemeasurement protocol. These bounds dependon the counting parameterη, andwe
have shown that they can bemade arbitrarily tight. Remarkably, for h b= , the derivedbound is exactly equal to
thenon-equilibrium lower boundderived by studying the dynamicalmap and employing a heatfluctuation
relation [34]. Applying these bounds to an interesting, yet simple, physical system, namely a pumped three level
V-systemcoupled to afinite sized thermal environment, we showedhow their tightness couldhighlight certain
features of the system, inour case the emergenceof a characteristic pumping frequency.Wealso introduced a clear
qualitative relation between themeandissipated heat, its lower bounds, and the degree of non-unitality of the
governing dynamicalmap. Finally,we showed the formalismdevelopedhere could also be applied to the LDF
analysis useful in studying dynamical phase transitions due to the fact it allows to obtain both upper and lower
bounds on themeandissipatedheat. In light of the generality of themethodology employed,we expect our results
to be applicable to other thermodynamically relevant quantities aswell, such aswork or entropyproduction.
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Appendix. Details on the coupledV-system

Herewe provide a detailed discussion on the physicalmodel considered in themain body of thework. First of all,
it is important to notice that the cumulant generating function h bQ( )t, , is left invariant by the passage to the
interaction picture. This can be easily seen by taking into account the definition of h bQ( )t, , and exploiting the
cyclicity of the trace and the relation   =[ ], 0E0 :

   

   

h b r

r

Q =

=

h h h h

h h h h

- -

- -

( ) [ ( ) ( ) ( ) ( ) ( ) ]
[ ( ) ( ) ( ) ] ( )

( ) ( ) ( ) † † ( )

( ) ( ) ( ) † ( )

t U t U t U t U t

U t U t

, , lnTr e e 0 e e

lnTr e e 0 e e . A1

SE I SE I

SE I SE I

2
0

2 2
0

2

2 2 2 2

E E E E

E E E E

The above identity guarantees that we are free tomove to the interaction picturewith respect to the free
Hamiltonian  = +S E0 in order to access the full statistics of the dissipated heat. Using the rotatingwave
approximation, the sumof theHamiltonian contributions +SE SF in the interaction picture reads

*  s s+ = Ä + Ä + W + W+ -( ) ( ) ( ) ( )t t J S S S S . A2SE SF x x y y
20 20

1
10

1
10

The phase of the externalfieldwill be chosen in order for W1 to be real, so that

  s s+ = Ä + Ä + W Ä( ) ( ) ( ) ( )t t J S S S . A3SE SF x x y y x
20 20

1
10

2

This expression for theHamiltonian in the interaction picture is then employed to obtain the cumulant
generating function and subsequently the family of lower bounds 

h ( )t using equation (A1).
Moreover, if we assume the initial state to be of factorized form r r r= Ä b( ) ( )0 0S , where r = Y ñáY( ) ∣ ∣0S 0 0

with f f a f aY ñ = ñ + ñ + ñ∣ ( )∣ ( ) ( )∣ ( ) ( )∣cos 0 sin sin 1 sin cos 2S S S0 andwhere r = ñ á + - ñ áb ∣ ∣ ( )∣ ∣p p0 0 1 1 1E E

with b= +( ( ))p B1 tanh1

2
(also in accordancewith the assumptionsmade in the erasure protocolmentioned

at the beginning of section 2), an exactmaster equation in the interaction picture can be found. For an initially
cold environment (case b  +¥) the latter has the form given in equation (25).Moreover, the cumulant
generating function can be found analytically, though its expression for a generic choice of initial state of the
system is quite cumbersome. For this reason, we report it below for the specific choice of q f p= =0, 2 which
corresponds to r = ñ á( ) ∣ ∣0 2 2S S considered in themain text:

h b b
w w

w

b

Q = +
W + + + W

+
-

h w h- -

⎟

⎛

⎝
⎜⎜

⎞
⎠

( )
( ) [ ( )]

( ) ( ( ) )

( )

( )

t B
J t J t J t

B

, , log 1 tanh
16 e sin 4 e sin 4 cos

2

1 tanh

2
,

A4

B B2
1
2 2 4

2
2 2 2

1
2

1 1
2 2

1
4

1

where w = W + J41 1
2 2 . The family of lower bounds 

h ( )t is then straightforwardly obtained. Themean
dissipated heat b á ñQ t (blue line infigure 1) can be found analytically and reads

b
w

w
á ñ = +

-w w⎡⎣ ⎤⎦( ) ( )
[ ( )] ( )Q B

BJ t J t
1 tanh

16 sin 4 sin
. A5t

2 2
2 1

2 2 2
2

1
4

1 1

Note that this quantity is always positive for every value of the parameters WJ B, ,1 and at every time t.
Finally, the quantifier of the non-unitality degree of the environmental channel

 = å - ( ) ( ) ( )†t A t A tE k Ek k can be analytically accessed for thismodel. By direct exponentiation of the
Hamiltonian (A3), the overall unitary evolution operatorU(t) governing the evolution of the composite system
can in fact be found and reads

w

=

-

-

W - W

- -

- W W

w
w

w
w

w
w

w
w

w
w

w
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fromwhich theKraus operators for the environmental channelAk can be found simply by taking the partial trace
over the system.Note that the above expression equation (A6) is given by assuming the following lexicographic
order to expand the vectors H HYñ Î Ä = ñ ñ ñ ñ ñ ñ∣ (∣ ∣ ∣ ∣ ∣ ∣ )21 , 20 , 11 , 10 , 01 , 00S E

T , where the first digit refers
to the theV-systemwhile the second to the environmental qubit.

The Frobenius normof the difference between b( )tA and the identity E can be expressed in a closed form
which, in the case r = ñ á( ) ∣ ∣0 2 2S S , reduces to


w

w b
=

-
=

+
á ñ

w w⎡⎣ ⎤⎦( ) ( )
( )

( )
( )t

J t J t

B
Q

16 2 sin 4 sin 2

1 tanh
, A7E t

2 2
2 1

2 2 2
2

1
4

1 1

Wepoint out that this last result, which clearly shows the link between themean dissipated heat and the degree of
non-unitality, does not hold in general for a generic initial state of the system, but only for the choice
r = ñ á( ) ∣ ∣0 2 2S S . In general however, this quantity is always positive and vanishes whenever the coupling J goes
to zero, or whenever the argument of the sine term goes to zero.
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