Z. Walsh, M. Vazquez, F. Benito-lopez, B. Paull, M. Macka et al., The use of scanning contactless conductivity detection for the characterisation of stationary phases in micro-fluidic chips, Lab on a Chip, vol.33, issue.14, pp.10-1777, 2010.
DOI : 10.1016/j.trac.2010.04.007

D. Sun, J. Lu, and Z. Chen, Microfluidic contactless conductivity cytometer for electrical cell sensing and counting, RSC Advances, vol.9, issue.73, pp.59306-59313, 2015.
DOI : 10.1007/s10404-010-0602-7

M. B. Sano, J. L. Caldwell, and R. V. Davalos, Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples, Biosensors and Bioelectronics, vol.30, issue.1, pp.30-43, 2011.
DOI : 10.1016/j.bios.2011.07.048

F. S. Fritzsch, K. Rosenthal, A. Kampert, S. Howitz, C. Dusny et al., Picoliter nDEP traps enable timeresolved contactless single bacterial cell analysis in controlled microenvironments, pp.13-397, 2013.
DOI : 10.1039/c2lc41092c

S. Emaminejad, R. W. Dutton, R. W. Davis, and M. Javanmard, Multiplexed actuation using ultra dielectrophoresis for proteomics applications: a comprehensive electrical and electrothermal design methodology, Lab Chip, vol.38, issue.1, pp.14-2105, 2014.
DOI : 10.1007/s00348-004-0864-5

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097078/pdf

C. Chen, P. Lin, and C. Chung, Microfluidic chip for plasma separation from undiluted human whole blood samples using low voltage contactless dielectrophoresis and capillary force, Lab on a Chip, vol.50, issue.12, p.14, 1996.
DOI : 10.1016/j.ijmachtools.2010.08.002

M. Gao and L. Gui, A handy liquid metal based electroosmotic flow pump, Lab Chip, vol.762, issue.11, pp.1866-1872, 2014.
DOI : 10.1016/S0378-4347(01)00327-9

X. Fu, N. Mavrogiannis, S. Doria, and Z. Gagnon, Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis, pp.15-3600, 2015.
DOI : 10.1039/c5lc00504c

S. H. Tan, B. Semin, and J. Baret, Microfluidic flow-focusing in ac electric fields, Lab on a Chip, vol.25, issue.6, pp.14-1099, 2014.
DOI : 10.1021/la9000472

URL : https://hal.archives-ouvertes.fr/hal-01138132

K. Park, H. Suk, D. Akin, and R. Bashir, Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board, Lab on a Chip, vol.31, issue.8, pp.2224-2229, 2009.
DOI : 10.1039/b904328d

S. Emaminejad, M. Javanmard, R. W. Dutton, and R. W. Davis, Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry, Lab on a Chip, vol.21, issue.1, pp.12-4499, 2012.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C

J. Freudenberg, S. Schelle, K. Beck, M. Von-schickfus, and S. Hunklinger, A contactless surface acoustic wave biosensor, Biosensors and Bioelectronics, vol.14, issue.4, pp.423-425, 1999.
DOI : 10.1016/S0956-5663(99)00012-3

X. Fang, H. Zhang, F. Zhang, F. Jing, H. Mao et al., Real-time monitoring of strand-displacement DNA amplification by a contactless electrochemical microsystem using interdigitated electrodes, Lab on a Chip, vol.136, issue.17, pp.12-3190, 2012.
DOI : 10.1039/c1an15610a

X. Fang, Q. Jin, F. Jing, H. Zhang, F. Zhang et al., Integrated biochip for label-free and real-time detection of DNA amplification by contactless impedance measurements based on interdigitated electrodes, Biosensors and Bioelectronics, vol.44, pp.44-241, 2013.
DOI : 10.1016/j.bios.2013.01.013

M. Faure, B. Sotta, and J. Gamby, Investigating the kinetics of paramagnetic-beads linked alkaline phosphatase enzyme through microchannel resistance measurement in dielectric microchip, Biosensors and Bioelectronics, vol.58, pp.58-61, 2014.
DOI : 10.1016/j.bios.2014.02.036

URL : https://hal.archives-ouvertes.fr/hal-01011983

M. Kechadi, L. Chaal, B. Tribollet, and J. Gamby, Dielectric impedance spectroscopy of polymer-coated microelectrodes for adsorption monitoring of proteins within polymer microchannels, Journal of Electroanalytical Chemistry, vol.737, pp.737-108, 2015.
DOI : 10.1016/j.jelechem.2014.09.028

URL : https://hal.archives-ouvertes.fr/hal-01111522

S. O. Blume, R. Ben-mrad, and P. E. Sullivan, Characterization of coplanar electrode structures for microfluidic-based impedance spectroscopy, Sensors and Actuators B: Chemical, vol.218, pp.218-261, 2015.
DOI : 10.1016/j.snb.2015.04.106

F. Bianchi, Y. Chevolot, H. J. Mathieu, and H. H. Girault, Photomodification of Polymer Microchannels Induced by Static and Dynamic Excimer Ablation:?? Effect on the Electroosmotic Flow, Analytical Chemistry, vol.73, issue.16, pp.73-3845, 2001.
DOI : 10.1021/ac010262z

Z. Wu, H. Jensen, J. Gamby, X. Bai, and H. H. Girault, A flexible sample introduction method for polymer microfluidic chips using a push/pull pressure pump, Lab on a Chip, vol.4, issue.5, pp.512-515, 2004.
DOI : 10.1039/b308405a

K. F. Trautmann, A. Weibezahn, and . Welle, Flexible fluidic microchips based on thermoformed and locally modified thin polymer films, Lab on a Chip, vol.8, pp.1570-1579, 2008.

M. Kechadi, J. Gamby, L. Chaal, H. Girault, B. Saidani et al., Polymer microchip impedance spectroscopy through two parallel planar embedded microelectrodes: Understanding the impedance contribution of the surrounding polymer on the measurement accuracy, Electrochimica Acta, vol.105, pp.105-112, 2013.
DOI : 10.1016/j.electacta.2013.04.141

URL : https://hal.archives-ouvertes.fr/hal-00832628

M. Kechadi, L. Chaal, B. Tribollet, and J. Gamby, Dynamics of BSA adsorption onto a photoablated polymer surface in a dielectric microchip, The Analyst, vol.21, issue.130, pp.139-1492, 2014.
DOI : 10.1021/la047288g

URL : https://hal.archives-ouvertes.fr/hal-01005903

M. Kechadi, B. Sotta, L. Chaal, B. Tribollet, and J. Gamby, A real time affinity biosensor on an insulated polymer using electric impedance spectroscopy in dielectric microchips, The Analyst, vol.35, issue.130, pp.139-3115, 2014.
DOI : 10.1002/bmb.22

URL : https://hal.archives-ouvertes.fr/hal-01019204

M. Kechadi, B. Sotta, and J. Gamby, Microchannel conductivity measurements in microchip for on line monitoring of dephosphorylation rates of organic phosphates using paramagnetic-beads linked alkaline phosphatase, Talanta, vol.132, pp.132-785, 2015.
DOI : 10.1016/j.talanta.2014.10.011

URL : https://hal.archives-ouvertes.fr/hal-01085012

M. Kechadi, J. Gamby, L. Chaal, B. Saidani, and B. Tribollet, Free Contact Microchannel Impedance Through Two Antiparallel Planar Microelectrodes, Journal of Flow Chemistry, vol.3, issue.3, pp.81-86, 2013.
DOI : 10.1556/JFC-D-13-00006

URL : https://hal.archives-ouvertes.fr/hal-00938256

M. Kechadi, L. Chaal, V. Vivier, B. Tribollet, and J. Gamby, Electrical impedance spectroscopy of a PET chip sandwiched between two disk electrodes: understanding the contribution of the polymer/electrode interface, Phys. Chem. Chem. Phys., vol.267, issue.Part 2, pp.18-20583, 2016.
DOI : 10.1038/267673a0

URL : https://hal.archives-ouvertes.fr/hal-01358834

J. Gamby, M. Lazerges, H. H. Girault, C. Deslouis, C. Gabrielli et al., Electroacoustic Polymer Microchip as an Alternative to Quartz Crystal Microbalance for Biosensor Development, Analytical Chemistry, vol.80, issue.23, pp.80-8900, 2008.
DOI : 10.1021/ac800443u

URL : https://infoscience.epfl.ch/record/134492/files/ac800443u.pdf

R. and D. Levie, The influence of surface roughness of solid electrodes on electrochemical measurements, Electrochimica Acta, vol.10, issue.2, pp.113-130, 1965.
DOI : 10.1016/0013-4686(65)87012-8