A. Engel, X. Shen, D. Selcen, and S. Sine, Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment, The Lancet Neurology, vol.14, issue.4, pp.420-434, 2015.
DOI : 10.1016/S1474-4422(14)70201-7

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4520251/pdf

L. Tintignac, H. Brenner, and M. Rüegg, Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting, Physiological Reviews, vol.95, issue.3, 2015.
DOI : 10.1152/physrev.00033.2014

D. Beeson, Congenital myasthenic syndromes, Current Opinion in Neurology, vol.29, issue.5, pp.565-571, 2016.
DOI : 10.1097/WCO.0000000000000370

S. Bauché, S. O-'regan, and Y. Azuma, Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea, The American Journal of Human Genetics, vol.99, issue.3, pp.753-761, 2016.
DOI : 10.1016/j.ajhg.2016.06.033

O. Grady, G. Verschuuren, C. Yuen, and M. , , vesicular acetylcholine transporter, cause congenital myasthenic syndrome, Neurology, vol.87, issue.14, pp.1442-1448, 2016.
DOI : 10.1212/WNL.0000000000003179

O. Connor, E. Töpf, A. Müller, and J. , Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome, Brain, vol.139, pp.2143-2153, 2016.

X. Shen, R. Scola, and P. Lorenzoni, Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome, Annals of Clinical and Translational Neurology, vol.91, issue.2, pp.130-138, 2017.
DOI : 10.1016/j.ajhg.2012.07.018

URL : http://onlinelibrary.wiley.com/doi/10.1002/acn3.387/pdf

C. Lam, K. Wong, H. Leung, and C. Law, Limb girdle myasthenia with digenic RAPSN and a novel disease gene AK9 mutations, European Journal of Human Genetics, vol.11, issue.2, pp.192-199, 2017.
DOI : 10.1016/S1474-4422(12)70040-6

V. Salpietro, W. Lin, D. Vedove, and A. , Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome, Ann Neurol, 2017.
DOI : 10.1002/ana.24905

URL : http://onlinelibrary.wiley.com/doi/10.1002/ana.24905/pdf

T. Evangelista, M. Hanna, and H. Lochmüller, Congenital Myasthenic Syndromes with Predominant Limb Girdle Weakness, Journal of Neuromuscular Diseases, vol.21, issue.6, pp.21-29, 2015.
DOI : 10.1016/j.nmd.2011.02.012

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746746/pdf

J. Müller, A. Herczegfalvi, and J. Vilchez, Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes, Brain, vol.130, issue.6, pp.1497-1506, 2007.
DOI : 10.1093/brain/awm068

D. Beeson, O. Higuchi, and J. Palace, Dok-7 Mutations Underlie a Neuromuscular Junction Synaptopathy, Science, vol.313, issue.5795, pp.1975-1978, 2006.
DOI : 10.1126/science.1130837

B. Ammar, A. Petit, F. Alexandri, and N. , Phenotype genotype analysis in 15 patients presenting a congenital myasthenic syndrome due to mutations in DOK7, Journal of Neurology, vol.6, issue.5, pp.754-766, 2010.
DOI : 10.1016/S0959-4388(96)80014-6

V. Guergueltcheva, J. Müller, and M. Dusl, Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations, Journal of Neurology, vol.170, issue.5, pp.838-850, 2012.
DOI : 10.2353/ajpath.2007.060687

K. Belaya, S. Finlayson, and J. Cossins, as a new gene in which mutations cause a congenital myasthenic syndrome, Annals of the New York Academy of Sciences, vol.23, issue.Pt 9, pp.29-35, 2012.
DOI : 10.1093/bioinformatics/btm404

K. Belaya, S. Finlayson, and C. Slater, Mutations in DPAGT1 Cause a Limb-Girdle Congenital Myasthenic Syndrome with Tubular Aggregates, The American Journal of Human Genetics, vol.91, issue.1, pp.193-201, 2012.
DOI : 10.1016/j.ajhg.2012.05.022

URL : https://doi.org/10.1016/j.ajhg.2012.05.022

K. Belaya, R. Cruz, P. Liu, and W. , cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies, Brain, vol.138, issue.9, pp.2493-2504, 2015.
DOI : 10.1093/brain/awv185

URL : https://academic.oup.com/brain/article-pdf/138/9/2493/13800333/awv185.pdf

F. Montagnese, E. Klupp, and D. Karampinos, Two patients with G MPPB mutation: The overlapping phenotypes of limb-girdle myasthenic syndrome and limb-girdle muscular dystrophy dystroglycanopathy: GMPPB Dystroglycanopathy, Muscle Nerve, 2017.

J. Senderek, J. Müller, and M. Dusl, Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect, The American Journal of Human Genetics, vol.88, issue.2, pp.162-172, 2011.
DOI : 10.1016/j.ajhg.2011.01.008

URL : https://doi.org/10.1016/j.ajhg.2011.01.008

D. Selcen, X. Shen, and M. Milone, GFPT1-myasthenia: Clinical, structural, and electrophysiologic heterogeneity, Neurology, vol.81, issue.4, pp.370-378, 2013.
DOI : 10.1212/WNL.0b013e31829c5e9c

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772836/pdf

M. Dusl, J. Senderek, and J. Muller, A 3'-UTR mutation creates a microRNA target site in the GFPT1 gene of patients with congenital myasthenic syndrome, Human Molecular Genetics, vol.24, issue.12, pp.3418-3426, 2015.
DOI : 10.1093/hmg/ddv090

A. Willems, B. Van-engelen, and D. Lefeber, Genetic defects in the hexosamine and sialic acid biosynthesis pathway, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.8, pp.1640-1654, 2016.
DOI : 10.1016/j.bbagen.2015.12.017

S. Huh, H. Kim, and H. Jang, Limb-girdle myasthenia with tubular aggregates associated with novel GFPT1 mutations, Muscle & Nerve, vol.20, issue.4, pp.600-604, 2012.
DOI : 10.1002/(SICI)1097-4598(199705)20:5<599::AID-MUS9>3.0.CO;2-4

R. Couteaux and J. Taxi, Distribution of the cholinesterase activity at the level of the myoneural synapse], Comptes Rendus Hebd Seances Acad Sci, vol.235, pp.434-436, 1952.

F. Chevessier, S. Bauché-godard, and J. Leroy, The origin of tubular aggregates in human myopathies, The Journal of Pathology, vol.14, issue.3, pp.313-323, 2005.
DOI : 10.1212/01.WNL.0000138575.14424.5F

H. Zephir, T. Stojkovic, and C. Maurage, Tubular aggregate congenital myopathy associated with neuromuscular block], Rev Neurol, vol.157, pp.1293-1296, 2001.

F. Chevessier, I. Marty, and M. Paturneau-jouas, Tubular aggregates are from whole sarcoplasmic reticulum origin: alterations in calcium binding protein expression in mouse skeletal muscle during aging, Neuromuscular Disorders, vol.14, issue.3, pp.208-216, 2004.
DOI : 10.1016/j.nmd.2003.11.007

A. Chaouch, J. Müller, and V. Guergueltcheva, A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome, Journal of Neurology, vol.18, issue.202, pp.474-481, 2012.
DOI : 10.1016/0896-6273(95)90080-2

S. Brady, E. Healy, and Q. Gang, Tubular Aggregates and Cylindrical Spirals Have Distinct Immunohistochemical Signatures, Journal of Neuropathology & Experimental Neurology, vol.75, issue.12, pp.1171-1178, 2016.
DOI : 10.1093/jnen/nlw096

S. Schiaffino, Tubular aggregates in skeletal muscle: Just a special type of protein aggregates?, Neuromuscular Disorders, vol.22, issue.3, pp.199-207, 2012.
DOI : 10.1016/j.nmd.2011.10.005

S. Takizawa, T. Ishihara, and Y. Shinohara, [A case of hypokalemic periodic paralysis with tubular aggregates in type 2A fibers and type 2B fibers], Rinsho Shinkeigaku, vol.26, pp.81-86, 1986.

J. Böhm, M. Bulla, and J. Urquhart, ORAI1 Mutations with Distinct Channel Gating Defects in Tubular Aggregate Myopathy, Human Mutation, vol.107, issue.11, pp.426-438, 2017.
DOI : 10.1073/pnas.1001169107

J. Böhm, F. Chevessier, D. Paula, and A. , Constitutive Activation of the Calcium Sensor STIM1 Causes Tubular-Aggregate Myopathy, The American Journal of Human Genetics, vol.92, issue.2, pp.271-278, 2013.
DOI : 10.1016/j.ajhg.2012.12.007

J. Noury, J. Böhm, and G. Peche, Tubular aggregate myopathy with features of Stormorken disease due to a new STIM1 mutation, Neuromuscular Disorders, vol.27, issue.1, pp.78-82, 2017.
DOI : 10.1016/j.nmd.2016.10.006

V. Nesin, G. Wiley, and M. Kousi, Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis, Proceedings of the National Academy of Sciences, vol.8, issue.4, pp.4197-4202, 2014.
DOI : 10.1002/mus.880080406

V. Schartner, N. Romero, and S. Donkervoort, Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy, Acta Neuropathologica, vol.44, issue.4, pp.517-533, 2017.
DOI : 10.1126/science.aad2395

K. Zoltowska, R. Webster, and S. Finlayson, Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR, Human Molecular Genetics, vol.22, issue.14, pp.2905-2913, 2013.
DOI : 10.1093/hmg/ddt145

T. Oki, K. Yamazaki, and J. Kuromitsu, cDNA Cloning and Mapping of a Novel Subtype of Glutamine:fructose-6-phosphate Amidotransferase (GFAT2) in Human and Mouse, Genomics, vol.57, issue.2, pp.227-234, 1999.
DOI : 10.1006/geno.1999.5785

Q. Chen, J. Müller, and P. Pang, Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1), Biomolecules, vol.478, issue.4, pp.2758-2781, 2015.
DOI : 10.1016/S0076-6879(10)78002-2

URL : http://www.mdpi.com/2218-273X/5/4/2758/pdf

K. Carss, E. Stevens, and A. Foley, Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of ??-Dystroglycan, The American Journal of Human Genetics, vol.93, issue.1, pp.29-41, 2013.
DOI : 10.1016/j.ajhg.2013.05.009

Y. Tajima, E. Uyama, and S. Go, Distal Myopathy with Rimmed Vacuoles, The American Journal of Pathology, vol.166, issue.4, pp.1121-1130, 2005.
DOI : 10.1016/S0002-9440(10)62332-2

N. Voermans, M. Guillard, and R. Doedee, Clinical features, lectin staining, and a novel GNE frameshift mutation in HIBM, Clin Neuropathol, vol.29, p.71, 2010.

M. Cerino, S. Gorokhova, and A. Béhin, Novel Pathogenic Variants in a French Cohort Widen the Mutational Spectrum of??GNE Myopathy, Journal of Neuromuscular Diseases, vol.109, issue.4, pp.131-136, 2015.
DOI : 10.1007/s004390100598