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COMPUTING REAL SOLUTIONS OF POLYNOMIAL FUZZY SYSTEMS

PHILIPPE AUBRY, JÉRÉMY MARREZ, AND ANNICK VALIBOUZE

ABSTRACT. This paper presents an efficient algorithm called SolvingFuzzySystem, or SFS, for
finding real solutions of polynomial systems whose coefficients are fuzzy numbers with finite
support and bijective spread functions. The real solutions of a given fuzzy system are deduced
from solutions of some polynomial systems with real coefficients. This algorithm is based
on new results that are universal because they are independent from the spread functions.
These theoretical results include the management of the fuzzy system’s solutions signs. An
implementation in the Fuzzy package of the free computer algebra software SageMath and a
parallel version of the algorithm are described.

1. INTRODUCTION

Modeling problems with uncertain data has important applications in engineering, eco-
nomics and social sciences [4]. In this context, many researchers have been interested in
searching for real solutions of a polynomial equation with fuzzy coefficients. This issue is
crucial for the interpolation of fuzzy functions [1]. The methods of resolution were initially
based on local techniques [2, 3, 14, 15]. Recently, a global approach using classical algebraic
techniques has been developed [7, 13]. Indeed, despite a name that may be confusing, fuzzy
numbers benefit from a perfectly formal definition.

We revisit this approach and strengthen it. In the past, both local and global approaches
focused on so-called triangular fuzzy numbers,that is, with linear spread functions. The re-
sults presented here apply more generally to fuzzy numbers with finite support and bijective
spread functions (such as, for example, quadratic fuzzy numbers, that have quadratic spread
functions).

In a fuzzy algebraic system, the fuzzy coefficients (coming from the experiments) are gen-
erally given under a representation called "tuple". Although the tuple representation is for-
mal, it cannot be handle by usual algebraic methods (Gröbner bases [6], triangular decom-
position [5], rational univariate representation [16], . . . ) to solve the system. Nevertheless, for
any fuzzy number with finite support and of bijective spread functions, this tuple representa-
tion is transformable into another representation called "parametric", where the coefficients
are no longer fuzzy but real. We give the expression of the parametric representation as a
function of the inverse of its spread functions (see Proposition 2.9).

We show how, in the context of fuzzy numbers with finite support and bijective spread
functions, the resolution of a system (S) of s equations with k variables and with fuzzy co-
efficients reduces to computing positive solutions of 2k systems, each of them formed by 3 s
equations of k variables with real coefficients (Theorem 3.9 and main Theorem 4.1). This new
algebraic real system denoted by T (S) is called the real transform of (S). We extend this result
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to so-called trapezoidal fuzzy numbers to get 4 s equations instead of 3 s (Section 3.6). After
describing a basic algorithm requiring the resolution of 2k systems, we propose an optimized
algorithm called SolveFuzzySystem which reduces the number of systems to solve.

In Section 2, we introduce fuzzy numbers, their different representations, and the transi-
tion from one to the other in the case of a fuzzy number with finite support. In Section 3, we
define the real transform and the induced fuzzy equations of a given fuzzy polynomial equa-
tion. We show that, in the triangular fuzzy case, the real transform is a system equivalent
to the collected crisp form calculated by previous methods. Finally, the study is extended to
the trapezoidal case. Section 4 applies the results of previous section to a fuzzy polynomial
system. It establishes main Theorem 4.1 which leads to a basic algorithm called BA-SFS. In
Section 5, this latter is optimized in the algorithm SolveFuzzySystem, or SFS. A discussion
about the parallelization of SFS follows. The implementation of Algorithm SFS in the Fuzzy
package in SageMath [17] is briefly presented in Section 6 together with examples illustrating
the sequential algorithm and the parallel algorithm.

2. FUZZY NUMBERS

This section presents basic generalities on the theory of fuzzy sets and fuzzy numbers, and
the two classical representations of fuzzy numbers respectively called “tuple“ and “paramet-
ric“. To go further the reader may be interested in [9]. We give some formulas which express
the parametric representation of a fuzzy number in function of its tuple representation in
case where the number has a finite support and bijective spread functions (Proposition 2.9).
These formulas are the key of our algebraic method to solve in R the algebraic fuzzy systems,
where R is the set of reals.

2.1. Generalities.

Fuzzy numbers are particular fuzzy sets, that we first define. In classical set theory, a subset E
of the universal set X is defined by its Dirichlet’s function, called also its characteristic func-
tion, defined from X to {0,1} such that the image of x ∈ X is 1 if x ∈ E and 0 otherwise. The
concept of fuzzy sets generalizes this classical concept. As depicted in Zadeh’s seminal paper
[20], a fuzzy set Ẽ is a class of objects with a continuum of grades of membership. An element
x belongs to Ẽ with a validity degree which is represented by a function with values between
0 and 1.

Definition 2.1. A fuzzy set Ẽ is a pair formed by a set E of X and its membership function
µẼ : X → [0,1].
For each element x of X, µẼ(x) is called the grade of membership of x to Ẽ.

The support Supp( f ) of a function f defined on a set A is the set of a ∈ A such that f (a) 6= 0.
The support of Ẽ is the support of its membership function: Supp(Ẽ) := Supp(µẼ). Fuzzy
numbers are defined from fuzzy sets by means of the notion of r -cut, which is also involved
in the parametric representation of Section 2.3.

Definition 2.2. Let Ẽ be a fuzzy set and r be a real number in ]0,1]. The r -cut of Ẽ is the
following set

Ẽr = {x ∈ X |µẼ(x) ≥ r } .
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The 0-cut Ẽ0 is the closure of Supp(Ẽ). A fuzzy set is said convex if each of its r -cuts is convex
for all r in [0,1].

Some examples of r -cuts for finite and infinite supports appear in Figures 1 to 3. They
represent specific fuzzy sets of R, defined below:

Definition 2.3. Let n be a real number. A fuzzy number ñ is a convex fuzzy set whose mem-
bership function µñ from R to the real interval [0,1] is continuous and satisfies µ−1

ñ ({1}) = {n};
i.e. n is the only real with grade of membership 1. The value n is called the mean value of the
fuzzy number ñ.

According to the definition of a fuzzy number ñ, the grade of membership of a real x in-
creases when x approaches the mean value n. Two fuzzy numbers are equal if they have the
same membership functions [20].

Remark 2.4. In literature there are more general definitions than the one given above. They
include the so-called trapezoidal fuzzy numbers, for which the grade of membership equals
1 over an interval of R containing the mean value. Definition 2.3 excludes them for the sake
of clarity in our study. Note that most applications make use of non-trapezoidal numbers.
However, we will show in Section 3.6 that our analysis, once established, simply extends to
the trapezoidal case.

Let ñ be a fuzzy number and µñ its membership function. The left restriction (resp. right
restriction) µñ− (resp. µñ+) is the restriction of µñ to the left (resp. right) of the mean value
n. Some families of fuzzy numbers can be characterized from the functions µñ− and µñ+.
Their denomination derives directly from the nature of these restrictions. The most popular
family contains the triangular fuzzy numbers for which the functions µñ− and µñ+ are linear
on Supp(ñ). Similarly one speaks of fuzzy numbers which are gaussian, quadratic,. . . Remark
that both restrictions functions are not necessarily of the same type. Then, for example, a
triangular-quadratic fuzzy number denotes a fuzzy number ñ with a left restriction µñ− lin-
ear on Supp(ñ)∩]−∞,n] and a right restriction µñ+ quadratic on Supp(ñ)∩ [n,+∞[.

Figure 1 represents a gaussian fuzzy number 3̃, i.e. of mean value n = 3. Its support is
infinite and the 0-cut Ẽ0 of Ẽ = ñ is the whole set R.

FIGURE 1. Infinite support: a gaussian fuzzy number 3̃; R is the 0-cut.
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2.2. Tuple representation.

The tuple representation of a fuzzy number with finite support was proposed in 1978 by D.
Dubois and H. Prade in [10]. In this representation the arithmetic operations have very simple
expressions as soon as they are performed within a family described in Definition 2.5, based
on spread functions.

A function H defined on the real interval [0,+∞[ with values in the real interval ]−∞,1] is
called a spread function if H(0) = 1, H(1) = 0, H is continue and decreasing on its domain.

Definition 2.5. Let L and R be two spread functions. A fuzzy number ñ with a finite support
is said of type L-R if there exist two positive real numbers α and β such that the membership
function µñ of ñ is given as follows:

µñ(x) =


L

(n−x
α

)
for n −α≤ x < n when α 6= 0

1 for x = n

R
(

x−n
β

)
for n < x ≤ n +β when β 6= 0

0 for x ∈]−∞,n −α[∪ ]n +β,+∞[

In particular, real numbern can be identified to fuzzy number ñ with α = β = 0. The triplet
(n,α,β) is called the tuple representation of fuzzy number ñ. Real numbers α and β are re-
spectively called the left spread and the right spread of ñ. Functions L et R are respectively
called the left spread function and the right spread function of the family of fuzzy numbers of
type L-R, denoted by F(L,R), and by extension the spread functions of ñ itself.

The support of ñ (or equivalently of µñ) is thus ]n−α,n+β[ when α 6= 0 and β 6= 0, [n,n+β[
when α= 0 and β 6= 0, ]n −α,n] when α 6= 0 and β= 0 and the singleton {n} when α= β= 0.

The triangular family, formed by the triangular fuzzy numbers, is the family F(L,R) where
the spread functions L and R are both linear. In this case, as L(0) = R(0) = 1 and L(1) = R(1) = 0,
we have L = R and this spread function equals the function F defined by F(x) =−x +1.

Example 2.6. Let 3̃ be a triangular fuzzy number with tuple representation (3,2,2). Figures 2
and 3 describe respectively the 1/2-cut Ẽ1/2 = [2,4] and the 0-cut Ẽ0 = [3−α,3+β] = [1,5] where
Ẽ = 3̃.

FIGURE 2. Finite support ]1,5[: 1/2-cut Ẽ1/2 = [2,4] of the triangular fuzzy
number Ẽ = 3̃ = (3,2,2).
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FIGURE 3. Finite support ]1,5[: 0-cut Ẽ0 = [1,5] of the triangular fuzzy num-
ber Ẽ = 3̃ = (3,2,2).

Inside a given family F(L,R), a tuple (n,α,β) represents an unique element ñ. The addition
is an internal law of F(L,R) defined by:

(n,α,β)+ (n′,α′,β′) = (n +n′,α+α′,β+β′) .

The family (F(L,R),+) is an abelian monoïd with the tuple 0 = (0,0,0) as identity element.
There exists an approximate product “·“ such that (F(L,R), ·) is an abelian monoïd with the
tuple 1 = (1,0,0) as identity element. The product is distributive with respect to addition. As
we study equations with fuzzy equations with real indeterminates, we consider only prod-
ucts of the form q · ñ, where q ∈ R. In this case, the product described by Dubois and Prade
becomes exact and is defined by:

q · (n,α,β) =
{

(q n, q α, q β) if q ≥ 0
(q n,−q β,−q α) if q ≤ 0 .

(1)

Note that the inversion of the spreads that keeps them positive when q < 0 : −q β and −q α

are respectively the left spread and the right spread of q · (n,α,β). In particular, we have

− ñ =−1 · (n,α,β) = (−n,β,α) .(2)

2.3. Parametric representation.

The parametric representation introduced in 1986 by R. Goetschel et W. Voxman [11] allows
them to embed all the trapezoidal fuzzy numbers into a topological vector space. The follow-
ing definition is an adaptation for non-trapezoidal fuzzy numbers:

Definition 2.7. The parametric form of a fuzzy number ñ is an ordered pair [n, n] of functions
from the real interval [0,1] to Rwhich satisfy the following conditions:

(i) n is a bounded left continuous non-increasing function on [0,1],
(ii) n is a bounded left continuous non-decreasing function on [0,1],

(iii) n(1) = n(1) = n.

Fuzzy number ñ defined by functions n and n has membership function µñ : R→ [0,1]
such that µ(x) = sup{r | n(r ) ≤ x ≤ n(r )}.

A fuzzy arithmetic, described in the following lemma, operates on parametric representa-
tion. It is coherent with those of the tuple representation given in Section 2.2.

Lemma 2.8. [18] Let q ∈R and m̃ = [m,m] and ñ = [n,n] two fuzzy numbers. Then
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FIGURE 4. Graph of functions 3 and 3 from the graph of a linear membership function

(1) m̃ = ñ if and only if m(r ) = n(r ) and m(r ) = n(r ) for each real r ∈ [0,1],

(2) m̃ + ñ = [m +n, m +n],

(3) q · ñ =
{

[q ·n, q ·n] if q ≥ 0,

[q ·n, q ·n] if q ≤ 0

where, for any function f from R to R, the product g = q · f represents the function defined as
g (r ) = q f (r ) for each r ∈R.

2.4. From tuple to parametric representation.

In this paper, we consider polynomials equations with coefficients that are fuzzy numbers of
a same family F(L,R) satisfying the sufficient requirement that the spread functions L and R
are bijective. Our solving method is based on the change of representation given by formu-
las of Proposition 2.9 below. It is fundamental because we have to rewrite algebraically each
fuzzy coefficient ñ ∈ F(L,R) from tuple representation (n,α,β) into parametric representa-
tion.

The parametric representation of ñ is strongly related to its r -cuts ñr since functions n and
n defined by

n(r ) = infr∈[0,1] ñr and n(r ) = supr∈[0,1] ñr

satisfy the requirements of Definition 2.7. This relation appears graphically in Figure 4 where
x1 = n(1/2) and x2 = n(1/2) for a triangular fuzzy number 3̃ = (3,2,3).

The graph of functions n and n is obtained by a plane rotation of the graph of the member-
ship function followed by a vertical symmetry. This transformation is illustrated in Figure 4
and in Figure 5 for a quadratic fuzzy number 3̃ = (3,2,3). Formally, it is given by the formulas
below.
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FIGURE 5. Functions 3 and 3 from the graph of a quadratic membership function

Proposition 2.9. Let ñ = (n,α,β) ∈ F(L,R) where L and R are bijective spread functions. Then
the parametric representation [n,n] of ñ satisfies the following formulas:

(3)

{
n(r ) = n −αL−1(r )
n(r ) = n +βR−1(r ) .

In particular, when the fuzzy number ñ is triangular, we have:

(4) n(r ) = α r +n −α et n(r ) =−βr +n +β .

Proof. For the real numberr ∈ [0,1], Definition 2.5 implies r = L
(

n−n(r )
α

)
= R

(
n(r )−n

β

)
. As L and

R are bijective, n(r ) and n(r ) satisfy Identity (3) of the proposition.
In the triangular case, we obtain formula (4) because L = R = F where F(x) = 1− x is bijective
with F−1 = F �

In the rest of the paper the different fuzzy numbers appearing in an equation or a system
are assumed to belong to a same family F(L,R).

3. THE REAL TRANSFORM OF A FUZZY EQUATION

We will use the following terminology: a variable is said real if its represents any real num-
ber; a real variable is said positive if it represents any positive real number, i.e. belonging to
R+; a k-uplet (b1, . . . ,bk ) of real variables or real numbers is said positive if each component
bi is positive.

In this section we consider an algebraic equation (E) with fuzzy coefficients and k real
variables x1, . . . , xk also called the indeterminates.

The problem when computing with real variables and fuzzy numbers comes from the fuzzy
numbers expressed as a product q · ñ because the spreads depend on the sign of q ∈ R (see

Lemma 2.8). In the fuzzy equation (E) each monomial m = xd1
1 · · ·xdk

k (di ∈ N) whose sign is
generally a priori unknown, plays the role of q ; note that if each exponent di is even then m is
positive. When the k-uplet x= (x1, . . . , xk ) is positive, the monomial m is necessary positive.



8 PHILIPPE AUBRY, JÉRÉMY MARREZ, AND ANNICK VALIBOUZE

To avoid this sign problem, Section 3.2 seeks to obtain the real solutions of (E) in Rk from
positive solutions in Rk of 2k auxiliary fuzzy equations E(I), where I ∈ {−1,1}k . We called the
latter equations the induced equations of E.

Considering only positive real variables, in Section 3.3 a crisp form of (E) is constructed in
order to deduce a collected crisp form of (E) ; in other words, an algebraic system of equations
with real coefficients whose positive solutions are those of (E). In the literature this collected
crisp form is formed by four equations obtained from (E) by an algorithm and only valid for
equations whose coefficients are triangular fuzzy numbers. In this paper, the coefficients are
only required to have a finite support and bijective spread functions.

Moreover Section 3.4 establishes a formula that provides a particular collected crisp form
of (E) formed by only three equations. We call it the real transform of (E) and denote it by
T (E).

To obtain the real solutions of (E), it is necessary and sufficient to collect the positive real
solutions of the 2k real transforms T (E(I)), where E(I) is an induced fuzzy equation of (E). In
practice, the equations E(I) are not pairwise distinct and it is not necessary to solve each of
the 2k systems T (E(I)). This subjet will be the center of the discussion of Section 4.

Section 3.5 compares the real transform T (E) to the usual collected crisp form given in
literature for the triangular case. Section 3.6 finally generalizes the results to trapezoidal fuzzy
numbers.

3.1. Preliminaries.

Let d= (d1, . . . ,dk ) ∈Nk and x= (x1, . . . , xk ). The monomial of multidegree d in the variables

x1, . . . , xk is the product xd = xd1
1 · · ·xdk

k . In the same way, for a = (a1, . . . , ak ) ∈ Rk , we denote

by ad the product ad1
1 · · ·adk

k . We denote by x×y the classical product (x1 y1, . . . , xk yk ) where

y = (y1, . . . , yk ). Note that (x×y)d =xdyd.

In this section, we consider the polynomial equation (E) below whith coefficients ñd and
m̃ belonging to a same family F(L,R) whose spread functions L and R are bijective. These
numbers are assumed to be known under their respective tuple representation m̃ = (m,α,β)
and ñd = (nd,αd,βd). Let

(5) (E) :
∑

d∈Supp(E)
ñd x

d = m̃ ,

where Supp(E) is the support of (E), i.e. the finite set of d ∈Nk such that ñd 6= (0,0,0) (we do
not take into account the right hand side of (E) which may be zero or not).

We denote by Sol(E) the set of solutions of (E) in Rk :

Sol(E) = {a ∈Rk | ∑
d∈Supp(E)

ñd a
d = m̃ } .

The set Sol+(E) of positive solutions of (E) is defined by:

Sol+(E) = {(a1, . . . , ak ) ∈ Sol(E) | ∀i ∈ [[1,k]] ai ≥ 0} = Sol(E)∩R+k .

We search for Sol(E) by using the r -cuts in order to obtain an algebraic system with real
coefficients that can be solved with classical computer algebra methods.
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However, according to Identity (3) of Lemma 2.8, the r -cut of ñdx
d depends on the sign of

xd while this sign is as unknown as those of the indeterminates x1, . . . , xn .
This is why we need to consider the case where the indeterminates x1, . . . , xn are both real

and positive. But we want all real zeros of (E), not only positive zeros. This is the discus-
sion of Section 3.2. This section aims to construct Sol(E) from the 2k sets of positive real
zeros Sol+(E(I)) of the induced fuzzy equations E(I), where I runs throughout the k-uplets of
{−1,1}k .

After Section 3.2, it will remain to know how to calculate the 2k sets Sol+(E(I)). For this
perspective, Section 3.3 and 3.4 suppose that the variables are both real and positive. In this
context, we seek the formula of the real transform T (E) of (E). The positive solutions of the
real algebraic system T (E) are exactly the positive solutions of the fuzzy algebraic equation
(E). In these two sections the fuzzy equation (E) plays the role of each of its induced equation
E(I).

3.2. Solutions of (E) in function of positive solutions of its induced equations.

Let a= (a1, . . . , ak ) ∈Rk . We put |a| = (|a1|, . . . , |ak |) where |b| denotes the absolue value of b ∈
R. Note that |ad| = |a|d. The k-uplet of signs of the components of a is ε(a) = (sign(a1), . . . ,
sign(ak ) ) ∈ {−1,1}k . The value ε(a)d =∏k

i=1 sign(ai )di is the sign 1 or -1 of the real ad and we
have

ad = ε(a)d |ad| = ε(a)d |a|d .

The evaluation in the value a of a term ñdx
d consists in replacing the monomial xd by its

value ad = ε(a)d |a|d. According to Identity (3) of Lemma 2.8, when the sign ε(a)d of ad is 1,
the r -cut of the fuzzy number ñd a

d is

[ nd(r ) |a|d , nd(r ) |a|d ] ,

and if this sign is −1 then the r -cut is

[ −nd(r ) |a|d , −nd(r ) |a|d ] .

It is therefore impossible to transform ñdxd in its parametric representation without knowing
the sign of xd. Our idea to work around this problem of unknown sign of xd, is to, introduce
an artificial k-uplet I ∈ {−1,1}k for the signs of the indeterminates. Then the real Id can be
mixed in with the coefficient ñd and x can be supposed to be positive. It leads to 2k induced
fuzzy equations E(I) defined below.

Definition 3.1. Let (E) be fuzzy algebraic equation with k variables given by (5). The induced
equations of (E) are the following equations

E(I) :
∑

d∈Supp(E)
Id ñd x

d = m̃ where I ∈ {−1,1}k .(6)

Note that (E) = E((1,1, . . . ,1)). In E(I), the k-uplet I plays the role of the k-uplet ε(a) of the
signs of a possible solution a of (E). For each term Id ñd x

d in the left side of E(I), Id ∈ {−1,1}
plays the role of the signε(a)d ofad while the sign ofxd itself is considered as positive. In E(I),
there is no problem to express the r -cuts of Id ñd x

d with x positive whereas it is impossible
in (E) for ñd x

d with x not necessarily positive.
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To describe relationships between the solutions of equations (E) and E(I), for a k-uplet of
real numbers q = (q1, . . . , qk ) and any subset S of Rk we introduce the following notation:

q⊗S = { q×a= (q1a1, . . . , qk ak ) |a= (a1, . . . , ak ) ∈S } .

Lemma 3.2. Let I ∈ {−1,1}k and E(I) be an induced equation of equation (E). Then

Sol(E) = I⊗Sol(E(I)) and Sol(E(I)) = I⊗Sol(E) .

Proof. As I× I = (1, . . . ,1), it is sufficient to prove first equality. For b ∈Rk a solution of E(I), we
have

m̃ =∑
d

Id ñd b
d =∑

d

ñd (I×b)d .

Hence I×b is a solution of (E).
Conversely, let a ∈ Sol(E). Then b= I×a is a solution of E(I) since

m̃ =∑
d

ñd (I× I×a)d =∑
d

Id ñd (I×a)d �

For each a ∈ Rk , there exists I ∈ {−1,1}k such that ε(a) = I and for which the evaluation of
E(I) in |a| is identical to the evaluation of (E) in a. The question of finding all solutions of
(E) from the positive solutions of its induced fuzzy equations E(I) is solved by the following
fundamental theorem:

Theorem 3.3. Consider a fuzzy algebraic equation (E). Then the set of real solutions of (E) is
formed by the I×b where I runs throughout the set of k-uplets {−1,1}k and b runs throughout
the set of positive solutions of E(I). In other words,

Sol(E) = ⋃
I∈{−1,1}k

I⊗Sol+(E(I)) .

Proof. It follows from Lemma 3.2 that each I⊗ Sol+(E(I)) ⊂ Sol(E). Conversely, if a ∈ Sol(E)
then ad = ε(a)d |ad| = ε(a)d |a|d . It follows that

m̃ =∑
d

ad ñd =∑
d

ε(a)d |a|d ñd .

Putting I = ε(a) and b= |a| ∈R+k , we obtain I×b= ε(a)× (ε(a)×a) =a where b is a solution
of E(I) �

Remark 3.4. The coefficients in (E) being given by their tuple representation, the equations
E(I) actually derive directly from E. For every d in Supp(E) the coefficient Id ñd is equal to ñd

itself when Id = 1, otherwise it is equal to (−nd ,βd ,αd ) when Id = −1, following Equality (2).
This ensures that for finding the whole set of real solutions of an equation (E) it is sufficient
to be able to compute positives real solutions of any fuzzy equation.

In practice, the 2k fuzzy equations E(I) are not always pairwise distinct. In particular, in
case of each component di of any d = (d1, . . . ,dk ) ∈ Supp(E) is even, all induced equations
E(I) are identical to equation (E).

Example 3.5. Take k = 3 variables x1, x2, x3 and consider the equation

(E) : 3̃ x2
1 x2 + 1̃ x4

3 = 6̃ .
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There are 8 = 23 3-uplets in {−1,1}3: I1 = (1,1,1), I2 = (1,1,−1), I3 = (−1,1,1), I4 = (−1,1,−1), I5 =
(1,−1,1), I6 = (1,−1,−1), I7 = (−1,−1,1) and I8 = (−1,−1,−1). There are only two distinct in-
duced equations E(I j ). Indeed, since Supp(E) = {d1 = (2,1,0),d2 = (0,0,4)}, we have Id2

j = 1 for

all j ∈ [[1,8]] ; thus the eight I j split up into the two following groups: that of j ∈ [[1,4]] with

Id1
j = 1 and that of j ∈ [[5,8]] with Id1

j =−1. Hence E(I1) = E(I j ) for all j ∈ [[1,4]] and E(I5) = E(I j )

for all j ∈ [[5,8]]. According to Theorem 3.3, we have

Sol(E) =
4⋃

j=1
I j ⊗Sol+(E(I1))

⋃ 8⋃
j=5

I j ⊗Sol+(E(I5)) .

We have E(I j ) = (E) for j ∈ [[1,4]] and the tuple representation of the coefficients of E(I j ) for
j ∈ [[5,8]] is determined with the help of Remark 3.4. With 3̃ = (3,α1,β1), 1̃ = (1,α2,β2) and
6̃ = (6,α,β), we have −3̃ = (−3,β1,α1) and

E(I j ) : (−3,β1,α1)x2
1 x2 + (1,α2,β2)x4

3 = (6,α,β) for j ∈ [[5,8]].

The following sections are devoted to finding the positive solutions of (E) that we will apply
to each equation E(I) taking into account Remark 3.4 illustrated in previous example.

3.3. Crisp form of (E) to find Sol+(E).

Algebraic solving of fuzzy equation (E) is usually based on the passage of the L-R represen-
tation of fuzzy numbers to their parametric representation. In the presentation below we
significally strengthen this classical method for triangular fuzzy coefficients by applying it to
a generic system and by extending it to more general fuzzy coefficients.

Following Lemma 2.8, equation (E) rewrites into two equalities on the r -cuts of the left
and right members of (E) if all the xd, d ∈ Supp(E), are supposed to represent reals of the
same sign. Indeed, according to Rule (3) of this lemma, the multiplication of a fuzzy number
by a scalar q splits into two cases: q ≤ 0 and q ≥ 0. Thus we search only for the solutions
a ∈ R+k since the real q := ad is then positive for each d ∈ Nk . We will apply the results to
every induced equation E(I).

For a ∈R+k , according to Lemma 2.8, the following equivalence applies:

a ∈ Sol+(E) ⇐⇒
[ ∑
d∈Supp(E)

nd(r )ad,
∑

d∈Supp(E)
nd(r )ad

]
= [

m(r ),m(r )
]

.(7)

This equivalence leads us to consider C (E), the following system of two equations with real
coefficients and k +1 variables x1, . . . , xk ,r , called the crisp form of (E) :

C (E) :


∑

d∈Supp(E)
nd(r )xd = m(r )∑

d∈Supp(E)
nd(r )xd = m(r ) .

Let F be a set of equations in R[x1, . . . , xk ,r ]. We put

Sol+k (F) = {a ∈R+k | ∀r ∈ [0,1] (a1, . . . , ak ,r ) ∈ Sol(F)}

where Sol(F) is the set of the solutions of F in Rk+1. Take a= (a1, . . . , ak ) ∈ R+k . According to
Equivalence (7), the k-uplet a is a solution of (E) if and only if for all real r ∈ [0,1] the (k +1)-
uplet (a1, . . . , ak ,r ) is a solution of the crisp form C (E). In other words, Sol+k (C (E)) is the set
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of the positive solutions of the fuzzy equation (E):

(8) Sol+(E) = Sol+k (C (E)) .

Example 3.6. Let us take again the fuzzy equation of Example 3.5 with triangular fuzzy num-
bers as coefficients. We recall that their r -cuts are given by the formulas (4) and that the triplets
of the common support to E(I1) = (E) and E(I5) are d1 = (2,1,0) and d2 = (0,0,4). The paramet-
ric representations of the coefficients of the equation are then written as follows:

• for both E(I1) and E(I5), we have ñd2 = 1̃ = [α2r +1−α2,−β2r +1−β2] and 6̃ = [αr +6−
α,−βr +6+β];

• for E(I1), we have ñd1 = 3̃ = [α1r +3−α1,−β1r +3−β1];
• for E(I5), we have ñd1 =−3̃ = [β1r −3−β1,−α1r −3−α1].

Therefore the respective crisp forms of the two distincts induced equation of (E) which are nec-
essary and sufficient to obtain the real solutions of (E) are:

C (E(I1)) :

{
(α1r +3−α1) x2

1 x2 + (α2r +1−α2) x4
3 = αr +6−α

(−β1r +3−β1 )x2
1 x2 + (−β2r +1−β2) x4

3 =−βr +6+β
and

C (E(I5)) :

{
(β1r −3−β1) x2

1 x2 + (α2r +1−α2) x4
3 = αr +6−α

(−α1r −3−α1) x2
1 x2 + (−β2r +1−β2) x4

3 =−βr +6+β .

In the particular triangular case, illustrated in Example 3.6, the crisp form has two equa-
tions with linear expressions w.r.t. the variable r in each side. It is a consequence of formulas
(4). The triangular case is easy because the spread functions are equal to F : x 7→ 1− x with
F−1 = F. The general case, when the spread functions are simply bijective, requires using in-
version formulas (3) with two indeterminates instead of only one. This leads to the crisp form
with two parameters in the following theorem:

Theorem 3.7. Let L and R be two spread functions and

(E) :
∑

d∈Supp(E)
ñd x

d = m̃ ,

be a fuzzy equation with coefficients in the family F(L,R) given by their tuple representations
as follows: m̃ = (m,α,β) and ñd = (nd,αd,βd) for d ∈ Supp(E). If the spread functions L and R
are bijective then the crisp form of (E) is given by:

(9) C (E) :


∑
d

nd x
d−m + (α−∑

d
αd x

d)u = 0∑
d

nd x
d−m + (−β+∑

d
βd x

d) v = 0 ,

where u = L−1(r ) and v = R−1(r ) for all r ∈ [0,1]. For a ∈ R+k , we have a ∈ Sol+(E) if and only
if, for all r ∈ [0,1], system (9) is satisfied by the (k +2)-uplet (a1, . . . , ak ,L−1(r ),R−1(r )).

Proof. By definition, a spread function H sends [0,1] to itself and if moreover H is bijective
then its inverse H−1 is continue and decreasing with H−1(1) = 0 and H−1(0) = 1. Suppose
that the spread functions L and R are bijective. As each r ∈ [0,1], we can put u = L−1(r ) and
v = R−1(r ). When r runs throughout [0,1] in the increasing sens, the parameters u and v
run throughout the same interval [0,1] in the decreasing sens. According to formulas (3), the
parametric form of the coefficients of the equation are given by

(10)
nd(r ) = nd−αd u , nd(r ) = nd+βd v for d ∈ Supp(E)
m(r ) = m −αu , m(r ) = m +βv .
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Then the crisp form C (E) of (E) given in (8) is written as a system of two equations with k +2
variables x1, . . . , xk ,u, v , where u and v are dependent on each other:

C (E) :


∑
d

nd x
d−αd u xd = m −αu∑

d
nd x

d+βd v xd = m +βv

By collecting the respective factors of u and v as well as the constant factor into both u and
v , the crisp form is thus expressed as we want in the form (9) of the theorem.

Last assertion in the theorem about Sol+(E) follows directly from equality (8) �

Note that Theorem 3.7 only requires that the restrictions on [0,1] of the two spread func-
tions L and R are bijective.

Our approach allows at the same time to improve and to generalize the methods known
so far. For instance, results in [13] and [7] are restricted to triangular fuzzy numbers. Indeed,
the crisp form of (E) with two parameters u = L−1(r ) and v = R−1(r ) given in Identity (9) is a
generalization of the crisp form known in triangular case with only one parameter r where
r ∈ [0,1].

In the aforementioned articles, for each problem to be solved, the algorithm computes
the system C (E) in variables x1, . . . , xk ,r , which is linear w.r.t. r . Then it is rewritten into
an equivalent system of four algebraic equations in x1, . . . , xk with real coefficients called col-
lected crisp form of (E). In next section 3.4, we will show how to get a particular collected crisp
form reduced to three equations, for any family F(L,R) such that the spread functions L and
R are bijective. This is the real transform of (E). In addition, we explicitly give its formulation
from (E).

3.4. The real transform and the positive real solutions of (E).

We define here the real transform of a fuzzy equation (E) and show that its positive real solu-
tions are also those of (E).

Definition 3.8. Let L and R be two spread functions and

(E) :
∑

d∈Supp(E)
ñd x

d = m̃ ,

a fuzzy equation with coefficients in the family F(L,R) given by their representations in tuple
as follows: ñd = (nd,αd,βd) (d ∈ Supp(E)) and m̃ = (m,α,β). The real transform T (E) of (E) is
the following polynomial system over R:

(11) T (E) :



∑
d∈Supp(E)

nd x
d = m̃∑

d∈Supp(E)
αd x

d = α∑
d∈Supp(E)

βd x
d = β .

This definition naturally extends to a system (S) of fuzzy equations such (E). We denote by
T (S) its real transform, i.e. the system formed by the real transforms of the equations in (S).
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Theorem 3.9. Under the assumptions of Definition 3.8, if the two spread functions L and R are
bijective then the set of positive real solutions of (E) equals the one of its real transform; in other
words:

Sol+(E) = Sol+(T (E)) .

Proof. As the spread functions L and R are bijective, we can apply Theorem 3.7. Let be a ∈
R+k . According to this theorem, we know that a ∈ Sol+(E) if and only if, for all r ∈ [0,1], the
crisp form of (E) expressed in (9) is satisfied by the (k +2)-uplet (a1, . . . , ak ,L−1(r ),R−1(r )).

With r = 1, we have u = L−1(1) = 0. Then a ∈ Sol+(E) satisfies the equation
∑

d ndx
d = m.

Note that when r = 1 we have v = 0 too because R(0) = 1, and we find the same equation and
not a second one. This is why we obtain three equations instead of four. Then, by taking r = 0
we have u = L−1(0) = 1 and v = R−1(0) = 1. By replacing in (9) the expression

∑
d ndx

d−m by
0 and each variable u and v by 1, we deduce that a positive solution of (E) is also a positive
solution of the real transform T (E) of (E).

For the inverse inclusion, consider the crisp form C (E) as a polynomial system in the
variables x and with coefficients in the ring R[u, v]. Any solution (a1, . . . , ak ) ∈ Rk of T (E)
is also a solution of C (E) in Rk whatever the parameters u and v may be in the interval
[0,1]. Obviously it remains true when they are furthermore connected by the constraint
G−1(u) = D−1(v) ∈ [0,1]. Hence any positive real solution of the real transform T (E) is also a
positive real solution of the fuzzy equation (E) �

Theorem 3.9 ensures that finding the positive real roots of (E) amounts to finding the pos-
itive real roots of its real transform T (E). Therefore it is no use to develop intermediate com-
putations on parametric representation like the previous methods did in the specific trian-
gular case.

From the expression of the real transform T (E) of E, we can now derive those of its induced
equations E(I). With reference to Remark 3.4 we immediately obtain the following corollary:

Corollary 3.10. Under the assumptions of Definition 3.8, let I ∈ {−1,1}k and E(I) the induced
equation of E defined in (6). Then the real transform of E(I) is given by:

(12) T (E(I)) :



∑
d|Id>0

nd x
d− ∑

d|Id<0
nd x

d = m∑
d|Id>0

αd x
d+ ∑

d|Id<0
βd x

d = α∑
d|Id>0

βd x
d+ ∑

d|Id<0
αd x

d = β .

Moreover, if the spread functions L and R are both bijective then Sol+(E(I)) = Sol+(T (E(I))).

3.5. Comparison with previous methods in the triangular case.

Consider a system (S) formed by s polynomial equations with fuzzy coefficients. In the spe-
cific case of triangular fuzzy numbers as coefficients, the authors of [13] and [7] compute a
collected crisp form of (S) formed by 4 s real algebraic equations. In this part we are interested
in the relationship between their collected crisp form with 4 s equations and our particular
collected crisp system with 3 s equations, that is the real transform of (S). For both systems
their positive real solutions are the same than those of (S). It is the principle of any collected
crisp form of (S).
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Consider below the system F1 of Section 6 in [7]:

F1 :

{
(2,1,1)x y + (3,1,1)x2 y2 + (2,1,1)x3 y3 = (7,3,3)
(5,1,1)x y + (2,3,1)x2 y2 + (2,2,1)x3 y3 = (9,6,3) .

Applied to first equation, the algorithm proposed in [7] produces the following collected crisp
form: 

x y +x3 y3 −3+x2 y2 = 0,
x y +2 x2 y2 −4+x3 y3 = 0
−x y −x3 y3 +3−x2 y2 = 0
3 x y +4 x2 y2 −10+3 x3 y3 = 0 ;

and it produces the following collected crisp form of the second equation of F1:
x y +3 x2 y2 +2 x3 y3 −6 = 0,
4 x y −x2 y2 −3 = 0,
−x y −x3 y3 +3−x2 y2 = 0,
6 x y +3 x2 y2 −12+3 x3 y3 = 0 .

Call T1 the system formed of the eight preceding equations.
Besides, by applying to F1 our formula (11) defining the real transform, we get T (F1), the

following system of six equations:

T (F1) :



2x y +3x2 y2 +2x3 y3 = 7
x y +x2 y2 +x3 y3 = 3
x y +x2 y2 +x3 y3 = 3
5x y +2x2 y2 +2x3 y3 = 9
x y +3x2 y2 +2x3 y3 = 6
x y +x2 y2 +x3 y3 = 3 .

An easy computation shows the equivalence of the systems T1 and T (F1), whose set of
solutions is {(x, y) ∈ R | x y = 1}. This phenomenon of equivalence between both approaches
may be explained in a very general way as we show below by considering the classical com-
putation of the collected crisp form obtained by an application of the algorithm of [7] on the
generic equation (5) of (E).

Let m̃ = (n,α,β) and ñd = (nd,αd,βd) (d ∈ Supp(E)} be the respective tuple representations
of the fuzzy coefficients of (E) that are assumed to be triangular. According to the formulas
(4), in the triangular case the r -cuts are given by

ñd(r ) = [αdr +nd−αd ,−βdr +nd+βd] for d ∈ Supp(E), and

m̃(r ) = [αr +m −α ,−βr +m +β] .

Unlike our treatment of the general case, the transformation does not require the use of
u = L−1(r ) and v = R−1(r ) where the spread functions L and R are bijective but not deter-
mined. For a triangular fuzzy number, L = R = F, where F(x) = F−1(x) = 1− x, being known,
the previous methods replace directly L−1(r ) and R−1(r ) by their expression in the variable
r in the equations. That’s how they end up in the crisp form of (E) below expressed as two



16 PHILIPPE AUBRY, JÉRÉMY MARREZ, AND ANNICK VALIBOUZE

polynomials in the variable r :

C (E) :


(
∑
d
αd x

d−α)r +∑
d

(nd−αd)xd−m +α= 0

(β−∑
d
βd x

d)r +∑
d

(nd+βd)xd−m −β= 0 .

A k-uplet (x1, . . . , xk ) ∈ Rk is a solution of C (E) for all r ∈ [0,1] if and only if each coefficient
w.r.t. the variable r of these independent equations is zero. The collected crisp form of (E) is
therefore written 

∑
d
αd x

d = α∑
d

(nd−αd)xd = m −α∑
d
βd x

d = β∑
d

(nd+βd)xd = m +β .

By applying this transformation to each equation in the system F1, we find the collected
crisp form T1 of our example. For the generic equation (E), by injecting the first equation into
the second one and by noting that the last equation is the sum of the three other ones, we
obtain the real transform T (E) with three equations defined in (11).

3.6. Case of trapezoidal fuzzy numbers.

As mentioned in Remark 2.4, our results adapt to trapezoidal fuzzy numbers with finite sup-
port. The latter numbers extend Definition 2.3 that we give about fuzzy numbers by allowing
µ−1

ñ ({1}) to be an interval [a,b]. In this context, a fuzzy number ñ with finite support is of type
L-R if its membership function µñ has the following form:

µñ(x) =


L

( a−x
α

)
for a −α≤ x < a when α 6= 0

1 for x ∈ [a,b]

R
(

x−n
β

)
for b < x ≤ b +β when β 6= 0

0 for x ∈]−∞, a −α[∪ ]b +β,+∞[ .

Then the tuple representation of the fuzzy number ñ is the quadruplet (a,b,α,β).
The expression of the parametric representation given in Proposition 2.9 takes the follow-

ing form for a trapezoidal number of type L−R whose spread functions L and R are bijective:

(13)

{
n(r ) = a −αL−1(r )
n(r ) = b +βR−1(r ) .

When the equation (E) :
∑

d∈Supp(E) ñd xd = m̃ has trapezoidal fuzzy coefficients of type
L-R, where ñd = (ad ,bd ,αd ,βd ) and m̃ = (a,b,α,β) are the tuple representations of the coeffi-
cients, the parametric forms (10) given in the proof of Theorem 3.7 become

nd(r ) = ad−αd u , nd(r ) = bd+βd v for d ∈ Supp(E) ;
m(r ) = a −αu , m(r ) = b +βv .
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Applying the argument of Section 3.4 (here L(1) = L(1) = 0 and R(0) = R(0) = 1), we obtain
in the same way a real transform of (E), but this time with four equations:

(14) T (E) :



∑
d

ad x
d = a∑

d
bd x

d = b∑
d
αd x

d = α∑
d
βd x

d = β .

Consequently the use of the real transform presented further for solving polynomial fuzzy
systems will directly transpose to systems with trapezoidal fuzzy coefficients.

The algorithms proposed in this article will remain valid for trapezoidal fuzzy numbers.
Only the algorithmic function RealTransform(S), which returns the real transform of a fuzzy
(S) system of s equations, will have to be adapted in order to return the real transform T (S)
with 4 s instead of 3 s equations by slightly applying formula (14) to each equation of (S).

4. REAL SOLVING OF FUZZY POLYNOMIAL SYSTEMS

The resolution of a fuzzy system (S) of s equations follows directly from the results for a
single equation. In Section 3, we deduce from equation (E) 2k fuzzy induced equations E(I)
where I runs throughout the 2k k -uplets of {−1,1}k . Following Theorem 3.3 the solutions of
(E) are deduced from the positive solutions of every fuzzy induced equation E(I). And fol-
lowing Corollary 3.10, the positive solutions of each E(I) are the positive solutions of the real
transform T (E(I)). In the same way, we will consider 2k real transforms T (S(I)) of induced
systems S(I), with 3 s equations, where I runs throughout the 2k k -uplets of {−1,1}k .

This section establishes the main Theorem 4.1 that expresses the real solutions of a system
from the positive solutions of the 2k real transforms of these induced systems. A first algo-
rithm results from a direct application of this theorem. Then it is discussed how to reduce
the number of computational branches by deriving some of the 2k sets of real solutions of
(S) from the positive real solutions of some system T (S(I)) previously processed by the algo-
rithm.These elements will lead to an optimized algorithm SolveFuzzySystem presented in
next section.

4.1. Foundations.

Let (E1), . . . , (Es) be the s fuzzy equations of the system (S). For each I ∈ {−1,1}k , we denote
by S(I) the induced fuzzy system formed by the s induced fuzzy equations E1(I), . . . ,Es(I) ac-
cording to the notation of Section 3.2. For each I ∈ {−1,1}k the real transform T (S(I)) of the
induced sytem S(I) is the system formed by the 3 s equations coming from the real transforms
of the induced equations E1(I), . . . ,Es(I).

The following main theorem is a direct consequence of Theorem 3.3 and Corollary 3.10:

Theorem 4.1. Let (S) be a fuzzy system with coefficients in F(L,R). If the spread functions L
and R are bijective then the set of solution of (S) is the union of the I×b for all k-uplets b which
are positives real solutions of the real transform T (S(I)) where I runs throughout {−1,1}k . In
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other words,

Sol(S) = ⋃
I∈{−1,1}k

{ I×b | b ∈ Sol+(T (S(I))) } = ⋃
I∈{−1,1}k

I⊗Sol+(T (S(I))).

A first algorithm for the real solving of fuzzy systems, called BA-SFS, derives naturally from
Theorem 4.1 and the results above. It is given below. Its input is a polynomial system with
fuzzy coefficients given in tuple representation and supposed to belong to a same family
F(L,R) whose spread functions L and R are bijective. It is based on the following functions:

• The function Multisign( j ) is the natural bijection between the interval [[0,2k − 1]]

and {−1,1}k : the image of the integer j = ∑2k−1
i=0 bi 2i ∈ [[0,2k − 1]] is the k-uplet I =

(co , . . . ,c2k−1) ∈ {−1,1}k with ci = 2bi −1;
• the function SolPos(SR) returns the positive real solutions of a system SR of poly-

nomial equations whith coefficients in R. It can be based on any known computer
algebra method. In the implementation described in section 6 it is Wu’s method of
decomposition into triangular polynomial systems that is used [19];

• the function RealTransform(S, I) applies formula (12) to return the 3 s equations of
the real transform of the fuzzy system S(I) with s equations (it is 4 s equations when
the fuzzy numbers are trapezoidal).

Algorithm 1 BA-SFS, a basic algorithm for solving fuzzy systems

Require: S, a polynomial system with fuzzy coefficients under tuple representation
k, the dimension, i.e. the number of variables

Ensure: sol , the set of real solutions of (S)

sol := { }
for j := 0 to 2k −1 do

I := MultiSign( j )
TRSI := RealTransform(S, I)
PR := SolPos(TRSI)
sol := sol

⋃
I⊗PR

end for

return sol

4.2. Reduction of the number of algebraic systems to solve.

By extension of the notation used for one equation, we denote Supp(S) the support of (S),
that is to say the set of d inNk such that xd appears in the left hand side of some equation of
(S) with a nonzero coefficient (the constant in right side can be possibly 0 = (0,0,0)).

In the for loop of Algorithm BA-SFS, the system S(I) may be identical to one of a previous
step. In this case, a new calculation of PR, the positive real solutions of S(I), is redundant and
it is desirable to avoid it.

The optimized algorithm called SolveFuzzySystem, or SFS, proposed in Section 5 pro-
vides every real solution of (S) avoiding unnecessary calculations.
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Thus we first seek to identify, from (S), induced systems S(I) which are identical. Example
3.5 dealing with a single equation shows how this situation can occur from the eight fuzzy
equations that reduces to only two distinct ones. When, for example, all the components of
each k -uplet d of the support of (S) are even, the 2k induced systems S(I) are identical. Our
goal is to automize the recognition of identical induced systems.

For this, let us construct the matrix M(S) of signs where the columns are indexed by the 2k

k -uplets I of {−1,1}k and the lines by the k -uplets d of Supp(S). The element at line d and
column I is Id ∈ {−1,1} which replaces the sign of xd in S(I):

M(S) =


I
...

d . . . Id


Let I1, I2 ∈ {−1,1}k two distinct k -uplets and consider C(I1) and C(I2) the two columns of
M(S) respectively indexed by I1 and I2. If C(I1) = C(I2) then S(I1) = S(I2). Indeed, for every
equation (E) of the system (S), the coefficient Id1 ñd of each monomial xd appearing in the
left hand side of each equation E(I1) is identical to the coefficient Id2 ñd in E(I2), according to
the definition of the induced equations given in (6).

The number of distinct systems S(I) among the 2k induced by (S) is thus at most equal to
the number of distinct columns in M(S). The matrix of signs avoids solving many induced
systems. Other rapid detections of identical induced systems can be implemented. Indeed,
two systems S(I1) and S(I2) can be identical up to a permutation of the equations whereas
C(I1) 6= C(I2). We can also find equations of the form "a = 0" and "−a = 0" since they have the
same solutions.

5. ALGORITHM SolveFuzzySystem

This section proposes an optimized algorithm SolveFuzzySystem, or SFS in contracted
form, for computing the real solutions of a polynomial fuzzy systems. The coefficients of the
systems are fuzzy numbers given under tuple representation and are supposed to belong to
a same family F(L,R) where the spread functions L and R are bijective. After the description
of sequential algorithm SFS in Section 5.1, we discuss its parallelization in Section 5.2.

5.1. The sequential algorithm SolveFuzzySystem.

Like the first algorithm BA-SFS, algorithm SolveFuzzySystem (or SFS) consists in iteratively
going through the columns of the matrix of signs M(S) described in Section 4.2. For each
column C(I) indexed by a k -uplet I of signs, it looks for real solutions of the system (S) from
S(I) avoiding unnecessary computations if one of the previous columns allows it.

For this purpose, it uses the following three vectors, indexed from 0 to 2k−1 which is empty
at the beginning of the algorithm:

• Di st i nctCol umns will contain the distinct columns of the matrix of signs;
• Di st i nctSy stems will contain the distinct fuzzy systems whose positive solutions

have been calculated; Its indexes are related to the indexes of Di st i nctCol umns;
• lb will contain positive real solutions of S(I) such that C(I) is in Di st i nctCol umns;

so it will be naturally indexed by following Di st i nctCol umns.
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As explained in the section 4.2, two cases can avoid redundant calculations when the cur-
rent column is I:

(1) If C(I) is identical to a previous column C(J) in M(S) then S(I) = S(J). In this case,
the algorithm does not add the column C(I) in the vector Di st i nctCol umns. It uses
the positive real solutions of S(J) already been calculated and stored in lb during a
previous step. This is the first step of the algorithm (see the 4: statement).

(2) If S(I) is identical to a system S(J) where C(J) is a column preceding C(I) but being
distinct from it, then the algorithm adds to the following index cpt the column C(I)
to the vector Di st i nctCol umns and the positive solutions of S(J) already calculated
in lb. As it is not relevant to add S(I) to vector Di st i nctSy stems, the algorithm does
not add to it at index cpt and its place remains empty. We can then apply tests (1)
and (2) to the following columns of M(S) (see the 7: statement).

Outside of situations (1) and (2), the positive solutions of the fuzzy system S(I) are com-
puted, as in the basic algorithm BA-SFS, with the functions RealTransform and SolPos. The
system S(I) is added to the Di st i nctSy stems vector at the cpt index, which contains the
fuzzy (distinct) systems whose positive solutions were calculated and stored in a l b vector at
the same corresponding index. The column C(I) in Di st i nctCol umns is kept at index cpt
also; it will be possible to apply tests (1) and (2) to the following columns of M(S) (see the 9:
statements).

In each step of the for loop, in other words, for each k-uplet I of signs Theorem 4.1 is ap-
plied to obtain the real solutions of (S) associated with the positive real solutions of the in-
duced system S(I).

Functions used by the the algorithm SolveFuzzySystem are those of the basic algorithm
BA-SFS completed by the following ones:

• the function SignColumn( j ,S) returns the ( j + 1)-th column of the matrix M(S) of
signs ( j starts to 0 not 1);

• the function IsIn( e , Di st i nct ) returns −1 if e is not in the vector Di st i nct , other-
wise it returns the index of the first occurence of e in Di st i nct . This function is called
indifferently on the signs columns of M(S) and on the polynomial systems. For an
efficient search on a polynomial system, we order polynomials according to a total
order on the monomials and by assigning the sign + to the dominant monomial (the
monomials in a same polynomial are ordered and the equations in the system are
also ordered).

5.2. A parallel version of the algorithm SolveFuzzySystem,

The positive solutions of each induced system S(I) are computed independently of those of
the other fuzzy induced systems (with successively the functions RealTransform and SolPos).
This part being the most expensive of the algorithm SFS, its possible parallelization is wel-
come. It requires to modify the algorithm in order to identify the distinct induced systems
S(I) to be solved, but without performing the resolution, and simultaneously store the useful
informations for further application of Theorem 4.1.

To achieve this aim, we modify the role of vector lb. It will be indexed from 0 to 2k − 1,
like the columns of M(S), and l b[ j ] will contain the index in Di st i nctSy stems of the system
corresponding to column SignColumn( j ). When the resolution of a system would have been
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Algorithm 2 SolveFuzzySystem or SFS, an optimized algorithm for solving fuzzy systems

Require: S, a polynomial system with fuzzy coefficients under tuple representation
k, the dimension, i.e. the number of variables

Data: cpt :=−1, the counter (up to a unit) of the number of distinct columns of M(S)
Di st i nctCol umns := [], the distinct columns of M(S) already scanned
Di st i nctSy stems := [], the distinct systems S(I) already met
l b := [], lb[i ] will be the set Sol+(S(I)) when C(I) will be Di st i nctCol umns[i ]
sol := { }

Ensure: sol , the set of real solutions of (S)

# the index j runs throughout the columns of M(S) which are indexed by MultiSign( j )
1: for j := 0 to 2k −1 do
2: I := MultiSign( j )

C := SignColumn( j ) # C is the current column in M(S)

# test if C is equal to a previous column of M(S)
i := IsIn( C , Di st i nctCol umns)

3: if i 6= −1 then
4: # lb[i ] contains the positive real solutions of S(I): apply Theorem4.1

sol := sol
⋃

I⊗ l b[i ]
# move to the next column in M(S) and cpt is not incremented
go to 1:

5: end if

# here C is a new column
cpt := cpt +1
Di st i nctCol umns[cpt ] := C

# test if S(I) is a new system
i := IsIn( S(I) , Di st i nctSy stems )

6: if i 6= −1 then
7: # the i -th system equals S(I). Its positive real solutions in l b[i ] are copied in lb[cpt ]

because C is a "new" column
lb[cpt ] := lb[i ]

8: else
9: # store the new system at cpt index, calculate its positive real solutions and store

them in lb[cpt ]
Di st i nctSy stems[cpt ] = S(I)
TRSI := RealTransform(S(I))
lb[cpt ] := SolPos(TRSI)

10: end if

# Apply Theorem 4.1
sol := sol

⋃
I⊗ lb[cpt ]

11: end for

12: return sol
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terminated, its positive solutions will be stored in a new vector SPos, with same indexes as
Di st i nctSy stems.

The general parallel algorithm takes place in three steps, as follows.

(1) Detect efficiently the distinct systems to solve in parallel. Moreover, for each column
I of M(S) (and equivalently for each j from 0 to 2k −1), the index of the first previous
system equals to the real transform of S(I) is affected to l b[ j ] (it can be j itself if S(I)
is new). The distinct systems are stored in the vector Di st i nctSy stems.
This is realized within the framework of the sequential algorithm SFS modified in the
following way:

• in 4: replace the statement sol := sol
⋃

I⊗ l b[i ] by l b[ j ] := lb[i ].
• in 7: replace the statement lb[cpt ] := lb[i ] by lb[ j ] := l b[i ].
• in 9: replace both statements TRSI := RealTransform(S(I)) and lb[cpt ] := SPos

(TRSI) by l b[ j ] := cpt .
(2) In parallel, solves every distinct system of the vector Di st i nctSy stems. For each sys-

tem SI := Di st i nctSy stems[cpt ], if it exists (see Remark 5.1), we apply the following
statements:

TRSI := RealTransform(SI)
SPos[cpt ] := SolPos(TRSI)

(3) Cross over the vector lb to build all the solutions of the system (S) from the results
of previous step ; It consists mainly in applying Theorem 4.1. This last step can also
be performed in parallel. Each lb[ j ] owns the value of the cpt index of positive real
solutions of S(I) in the vector SPos where I = MultiSign( j ). This step is realized by the
following loop:

for j := 0 to 2k −1 do
sol := sol

⋃
MultiSign( j )⊗SPos[lb[ j ]]

end for

Remark 5.1. As in algorithm SFS, when C = C(I) is a new column butS(I) is not a new system,
nothing is stored at the corresponding index in Di st i nctSy stems.

A detailed example of this parallel version is given in Section 6.2.

6. IMPLEMENTATION OF THE ALGORITHM SFS AND EXAMPLES

We already have a package Fuzzy under SageMath written by J. Marrez [12]. It contains
a function resolution_reelle_systemes_flous that implements algorithm SFS of Sec-
tion 5. Recall that fuzzy numbers must have bounded support and must lies in a familyF(L,R)
where L and R are bijective.

In Section 6.1 we describe this function resolution_reelle_systemes_flous. Then two
complete examples are given in Section 6.2. The first one details intermediate computations
of the function resolution_reelle_systemes_flous. The second one presents on another
fuzzy system the computations performed by the parallel version of the algorithm.

6.1. Representations and main functions implemented in Fuzzy.

The external representation of data in Fuzzy package is described below:
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• a spread function H has a representation rep(H); for example "Quad" if H is quadratic;
• a fuzzy number ñ = (n, a,b) with spread functions L and R is represented by :

rep(ñ) = NombreFlouRed((n, a,b,rep(L), rep(R));
• as usually, a term xd is represented by rep(xd) = x1∗∗d1 · · ·xk∗∗dk ;
• a monomial M = ñxd is represented by the pair rep(M) = (rep(ñ), rep(xd) );
• a polynomial p with fuzzy coefficients is represented by rep(p), the list of the rep(M)

where M ∈ Supp(P) ; i.e. it is a sparse representation;
• a polynomial equation (E) : p = q is represented by the pair rep((E))=(rep(p), rep(q)) ;
• a system (S) formed by s equations (E1), . . . , (Es) is represented by the list

rep((S))=[rep((E1)), . . . , rep((E2))].

For example, with quadratic fuzzy numbers, the system

F :

{
x + (−1,1,1) = (−2,1,1)y2,

x + (3,1,1) = (2,1,1)y2

is represented by the variable System defined as follows:
LeftSide1 = [(NombreFlouRed(1,0,0,"Quad","Quad"),x),

(NombreFlouRed(-1,1,1,"Quad","Quad"),1)]
RightSide1 = [(NombreFlouRed(-2,1,1,"Quad","Quad"), y**2) ]
LeftSide2 = [(NombreFlouRed(1,0,0,"Quad","Quad"),x),

(NombreFlouRed(3,1,1,"Quad","Quad"),1)]
RightSide2 = [(NombreFlouRed(2,1,1,"Quad","Quad"),y**2) ]
System = [ (LeftSide1, RightSide1 ), (LeftSide2, RightSide2)]

Remark 6.1. The fuzzy equations of system F does not have exactly the same form than the
generic equation (E) studied in our paper. The right side of (E) is not restricted to a fuzzy num-
ber m̃. However our results clearly extend to such a form of equations.

The function resolution_reelle_systemes_flous(S,k) implements the sequential al-
gorithm SFS of this paper. It takes as first parameter the representation of a fuzzy system (S)
with s equations. The second parameter k is the number of variables. It returns the set of
k-uplets real solutions of (S). For this, it mainly uses the functions transformee_reelle()
and SolPos() described below.

The function transformee_reelle(S,rep(I)), where rep(I)) is a list representing a k-
uplet of signs I ∈ {−1,1}k , returns the real transform of the induced fuzzy system S(I), that is
the system of 3 s equations with real coefficients obtained by transforming each of its equa-
tions E(I) as in Corollary 3.10. It implements our function RealTransform of the algorithms
in Sections 4 and 5.

The function SolPos(Sr) returns the set of positive real solutions of a polynomial system
Sr with real coefficients. The representation of Sr is a list [p1., . . . , pr ] of polynomials such
that pi = 0. It first calls the function Wu(Sr) which implements Wu’s algorithm [19]. This
one returns a set Z of polynomial sets called characteristics sets such that the variety V(Sr) of
zeroes of Sr admits a decomposition into triangular polynomial systems of the form V(Sr) =⋃

B∈Z V(B) \ V(IB) où IB = ∏
b∈B i ni t (b). One can find the definition of the initial i ni t (b) of

a polynomial b in ([8]) or in [7], a paper where Wu’s method is described in order to solve
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polynomial systems with triangular fuzzy numbers as coefficients. From the set Z, a function
get_zeros(Z) returns the elements in R+k of the variety V(Sr).

6.2. Examples.

Example 1 : As in [7] (example 6.1), the call resolution_reelle_systemes_flous(F,2)
returns the variety V(F) = {(x = −1, y ± 1)}, solution of the system F given above. Here we
describe the intermediate computations.

With k = 2 variables x, y , there are the 22 = 4 following multisigns: I0 = [−1,−1], I1 = [−1,1],
I2 = [1,−1], I3 = [1,1]. By taking them in this order corresponding respectively to j = 0,1,2,3
in the algorithm SFS and by ordering the monomials of the support as follows: x,1, y2, the
matrix of signs M(F) is

I0 I1 I2 I3

x
1
y2

−1 −1 1 1
1 1 1 1
1 1 1 1


Note that in the performance of the algorithm below, a column is represented by a line vector.

The variable Sr is the real transform of the induced fuzzy system F(I) of s = 2 equations,
with I ∈ {I1, . . . , I4}; in theory Sr is formed by 3s = 6 equations. But in practice, some are iden-
tical. For example, when I = [−1,−1], the real transform of F(I) is formed by the six equations
2y2−x−1 = 0,−y2+1 = 0,−y2+1 = 0,−2y2−x+3 = 0,−y2+1 = 0,−y2+1 = 0, that reduces to
Sr= [−y2 +1,2y2 − x −1,−2y2 − x +3] by removing duplicates polynomials. It is the first real
polynomial system to solve in the program. For obvious practical reasons, this system is the
one registered in the variable DistinctSystems, and not the fuzzy system F(I) as mentioned
in the algorithm SFS.

Now let us present the trace of the function resolution_reelle_systemes_flous(F,2)
by linking the real parameters to formal parameters: S=F et k=2.
At the beginning, we have: cpt = -1 , DistinctColumns = [ ] and DistinctSystems =
[ ].

j=0 : I=I_{0}=[-1,-1], C=[-1,1,1]
As the column C is new

cpt=cpt+1 ; i.e. cpt =0
DistinctColumns[0] = C
Sr = transformee_reelle(S,I) gives Sr=[-y^2+1,2*y^2-x-1,-2*y^2-x+3]
DistinctSystems[0] = Sr
SolPos(Sr) gives lb[0]=set([(1, 1)]), the positives real solutions of Sr
lb[0]= set([(1, 1)])

the product of I with (1, 1) in lb[0] is added to sol:
sol = set([(-1, -1)])

DistinctColumn=[[1,-1,1]]
DistinctSystems=[[y^2-1,2*y^2-x-1,2*y^2+x-3]]

j=1 : I=I_{1}=[-1,1], C=[-1,1,1]
As C equals DistinctColumns[0]



COMPUTING REAL SOLUTIONS OF POLYNOMIAL FUZZY SYSTEMS 25

the product of I with (1, 1) in lb[0] is added to sol:
sol = set([(-1, 1), (-1, -1)])

j=2 : I=I_{2}=[1,-1], C=[1,1,1]
As the column C is new

cpt=cpt+1 ; i.e. cpt =1
DistinctColumns[1] = C
Sr = transformee_reelle(S,I) gives Sr=[2*y^2+x-1,-2*y^2+x+3,-y^2+1]
DistinctSystems[1] = Sr
SolPos(Sr) gives lb[1]= set([]), the positive real solutions of Sr

any product of elements of lb[1] with I is added in sol:
sol = set([(-1, 1), (-1, -1)])

We have
DistinctColumn=[[-1,1,1],[1,1,1]]
DistinctSystems=[[y^2-1,2*y^2-x-1,2*y^2+x-3],[2*y^2+x-1,2*y^2-x-3,y^2-1]]

j=3 : I=I_{3}=[1,1] , C=[1,1,1]
C equals DistinctColumns[1].

any product of elements of lb[1] with I is added in sol:
sol = set([(-1, 1), (-1, -1)])

Therefore we find the variety V(F) = {(x =−1, y ±1)}.

Example 2 : Detailed example of the parallel version of the algorithm SFS on the following
fuzzy system F1:

F1 :

{
(2,1,1)x y + (3,1,1)x2 y2 + (2,1,1)x3 y3 = (7,3,3),

(5,1,1)x y + (2,3,1)x2 y2 + (2,2,1)x3 y3 = (9,6,3)

The solution returned by the function resolution_reelle_systemes_flous(F1,2) of
the Fuzzy package is the variety V(F1) = {(x = 1

y , y) | y ∈ R\{0})}, like in [7]. We notice that in
the first equation (E), the left spread of each coefficient equals the right spread. Thus, in the
real transform of (E), both equations

∑
d∈Supp(E)

αd x
d = α and

∑
d∈Supp(E)

βd x
d = β

are equal to x3 y3 + x2 y2 + x y = 3. We find again this equation with the right spreads of the
second equation of F1. This is why we will have 4 and not 6 = 3s equations in the real trans-
form of any induced fuzzy equation F1(I). During an implementation, it is possible to take
this into account in order to identify the identical equations once and for all on the initial
fuzzy system and then use the result on each of its induced systems.

We will find V(F1) by applying the parallel version of our algorithm. The multi-signs are
the same as for the F system of the first example and the support of F1 is {x3 y3, x2 y2, x y,1}.
The matrix of signs of F1 is the following:
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I0 I1 I2 I3

x3 y3

x2 y2

x y
1


1 −1 −1 1
1 1 1 1
1 −1 −1 1
1 1 1 1


We see that it is sufficient to solve only the systems corresponding to the first two columns ;

that is, we have the following identities on fuzzy induced systems: F1(I0) = F1(I3) and F1(I1) =
F1(I2). In the performance of the algorithm, this information will be found in the vector lb.
Thus, the number of systems to solve is reduced by half.

In the first step of the parallel algorithm, after the loops j= 0 and j=1, we have:

DistinctColumns = [[1, 1, 1, 1], [-1, 1, -1, 1]]
DistinctSystems=

[[2*x^3*y^3+2*x^2*y^2+5*x*y-9,2*x^3*y^3+3*x^2*y^2+2*x*y-7,
2*x^3*y^3+3*x^2*y^2+x*y-6, x^3*y^3+x^2*y^2+x*y-3],

[2*x^3*y^3-3*x^2*y^2+2*x*y+7,2*x^3*y^3-3*x^2*y^2+x*y+6,
x^3*y^3-x^2*y^2+x*y+3, 2*x^3*y^3-2*x^2*y^2+5*x*y+9]]

lb = [0,1]

After the loops j=2 and j=3, only the vector lb is modified, as follows:
lb=[0,1,1,0].

As lb[2]=lb[1] the positive real solutions of the third induced system F1(I2) corresponding
to lb[2] are those of the second induced system F1(I1) corresponding to lb[1]; after second
step, this positive real solutions will be in SPos[1]. The same occurs with lb[3]=lb[0].

In second step, function SolPos is called in parallel on each of both systems stored in
DistinctSystems in order to compute their respective positive real solutions. These solu-
tions are recovered and stored in the vector SPos. We then have:

SPos=[set([(1/y, ’R+’)]),set([])].
Last step computes in parallel for each j = 0,1,2,3 the products I ⊗ SPos[lb[j]] cor-

responding to the last column ”returned solutions” below. The four results are added in
the variable sol containing the real solutions of the fuzzy system F1. Concretely, this gives:

j I lb[j] SPos[j] returned solutions
0 [-1,-1] 0 set([(1/y, ’R+’)]) set([(1/y, ’R-’)])
1 [-1,1] 1 set([]) set([])
2 [1,-1] 1 SPos[1] set([])
3 [1,1] 0 SPos[0] set([(1/y, ’R+’)])

sol = set([(1/y, ’R+’), (1/y, ’R-’)])

As in the sequential version, only two distinct systems are solved. As announced, we find the
variety V(F1) = {(x = 1

y , y) | y ∈R\{0})}.

7. CONCLUSION

Up to now, given a fuzzy system (S) of s equations and k indeterminates, the existing al-
gebraic methods have performed computations with the parametric representation of the
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coefficients to obtain the collected crisp form of (S) formed by 4s real equations. We show
that these computations are superfluous and exhibit a formula that defines an equivalent
system with 3s real equations. We call it the real transform T (S) of the system (S). As a main
property, it has the same positive solutions as (S) (Theorem 3.9).

Unlike the previous methods that were restricted to triangular fuzzy numbers, our results
apply to any family F(L,R) where the spread functions L and R are bijective. Moreover there is
no use to compute the inverse of the spread functions since the real transform is a universal
formula independent from L and R.

For solving equations with fuzzy coefficients, one must face the issue of the sign of solu-
tions. It is intrinsic to fuzzy numbers, since the product by a real scalar is expressed differently
depending on the sign of this scalar. Our strategy has been to only focus on positive solutions
by putting back the issue on the fuzzy coefficients. Theorem 4.1 made it possible since it ex-
presses the real solutions of (S) from the positive solutions of at most 2k real systems. From
this theorem we devise a first algorithm that automatizes the research of solutions by avoid-
ing the studies of signs needed in previous methods. Our approach is independent of the
choice of the method to calculate the positive solutions of a system of polynomial with real
coefficients.

Among the 2k induced systems of (S), some of them are identical. Our examples show that
it is not rare to substantially reduce the number of induced systems to solve. We describe a
strategy to avoid redundant branches of computations that leads to an optimized algorithm,
SolvingFuzzySystem, that is implemented in the package Fuzzy of the computer algebra
system SageMath.

The most costly part of this algorithm lies in finding the positive solutions of the real trans-
form of the distinct induced systems of (S). We suggest in Section 5.2 a parallelization of the
algorithm SolvingFuzzySystem that executes in parallel these independent computations,
and we illustrate its performance with the second example of Section 6.
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